· W.S. Han, 차세대 고효율 태양전지 기술 동향, 전자통신동향분석 제 22권 제 5호 2007년 10월
· 정훈, 국내외 태양광 기술개발 및 시장 동향, ASCT, Volume 25, Number 3 May 2016
· 양태열, 페로브스카이트 태양전지 공정 기술, 전기전자재료 제29권 제8호(2016년 8월)
· Andrew Carlson, Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication, Adv. Mater. 2012, DOI: 10.1002/adma.201201386
· Jung Kyu Kim, Enhanced Performance and Stability of Polymer BHJ
· Photovoltaic Devices from Dry Transfer of PEDOT:PSS, ChemSusChem 2014, 7,1957 – 1963
· Kang Min Kim, Hydrophilic polyurethane acrylate and its physical property for efficient fabrication of organic photovoltaic cells via stamping-transfer, Organic Electronics 31 (2016)
· 신원석, (2008) 유기박막 태양전지 개발 동향. Polymer Science and Technology Vol. 19, No. 3, June 2008
· 신원석, 유기박막 태양전지 개발 동향, Polymer Science and Technology Vol.19, No. 3, June 2008
· 신원석, 유기박막 태양전지 개발 동향, Polymer Science and Technology Vol.19, No. 3, June 2008
· G. Yu, J. Gao, J. C. Hummelene, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995). [65] 신원석, 유기박막 태양전지 개발 동향, Polymer Science and Technology Vol.19, No. 3, June 2008
· Lattante. S, Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells, Electronics, 2014, 3, 132-164.
· 김희주, 이광희, 유기 복합재를 이용한 고분자 태양전지, Polymer Science and Technology Vol. 14, No. 1, February 2003
· 문상진, 김희주, 나노박막형 유기 태양전지의 기술 동향, Polymer Science and Technology Vol. 17, No. 4, August 2006
· P. Peuman, S. Uchida, and S. R. Forrest, Efficient bulk heterojunction photovoltaic cells using smallmolecular-weight organic thin films Nature, 425,158 (2003).
· 김정용, 나노기술을 기초로 한 유기태양전지, 고분자과학과 기술, 제15권 5호, 2004년 10월, 619
· 장지근, 유기 태양전지의 개발 현황과 기술 과제, 한국재료학회지 434, Kor. J. Mater. Res. Vol. 24, No. 8 (2014)
· Carlson, A., Bowen, A. M., Huang, Y., Nuzzo, R. G., & Rogers, J. A. (2012). Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 24(39), 5284–5318.
· Minji Yi, W. J. (2019). Enhanced interface of polyurethane acrylate via perfluoropolyether for efficient transfer printing and stable operation of PDOT:PSS in perovskite photovoltaic cells. Applied Surface Science 467–468,168-177.
· J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials, Adv. Appl. Mech. 29 (1991) 63–191.
· A.N. Gent, S.‐M. Lai, Interfacial bonding, energy dissipation, and adhesion, J. Polym. Sci. Part B Polym. Phys. 32 (1994) 1543–1555
· J.G. Williams, Energy release rates for the peeling of flexible membranes and the analysis of blister tests, Int. J. Fract. 87 (1997) 265–288
· X. Feng, M.A. Meitl, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers,Competing fracture in kinetically controlled transfer printing, Langmuir 23 (2007)12555–12560.
· 강수민, 나노박막 전사 방법 및 계면 파괴 역학, J. Microelectron. Packag. Soc.Vol. 27, No. 3 (2020)
· Jong Hwa Lee, Vacuum-process-based dry transfer of active layer with solvent additive for efficient organic photovoltaic devices, J. Mater. Chem. C,2017, 5, 1106
· Woong Sik Jang, Nanopatterned Bulk-Heterojunction Photovoltaic Cells Using Polyurethane Acrylate (PUA) Film Replica of Colloidal Crystal Arrays via stamping-transfer Process, Macromolecular Research, Vol. 24, No. 6, pp 483-487(2016)
· H. C. Ko, M. P. Stoykovich, A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics”, Nature, 454, 748 (2008).
· S. Kang, J. B. Pyo, and T. S. Kim, “Layer-by-Layer Assembly
· of Free-Standing Nanofilms by Controlled Ro[82] 강수민, 나노박막 전사 방법 및 계면 파괴 역학, J. Microelectron. Packag. Soc. Vol. 27, No. 3 (2020)lling”, Langmuir, 34(20), 5831 (2018).
· 강수민, 나노박막 전사 방법 및 계면 파괴 역학, J. Microelectron. Packag. Soc. Vol. 27, No. 3 (2020)
· Woong Sik Jang, Long-Term Stable Transferred Organic Photoactive Layer-Based Photodiode with Controlled Wetting through Interface Stabilization, ACS Appl. Mater. Interfaces 2018, 10, 38603−38609
· Jung Kyu Kim, Enhanced Performance and Stability of Polymer BHJ
· Photovoltaic Devices from Dry Transfer of PEDOT:PSS, ChemSusChem 2014, 7,1957 – 1963
· C. B. Honsberg, S. G. Bowden, “Photovoltaics Education Website”, 2019,
· www.pveducation.org.C.B.Honsberg, S.G.Bowden, (옯긴이: 윤경훈), PV CDROM 태양광개론, 한국에너지기술연구원, Arizona State University, 2012, ISBN 978-89-91248-39-7
· M. A. Green, “Solar cell fill factors: General graph and empirical
· expressions”, Solid-State Electronics, vol. 24, pp. 788 - 789, 1981.
· Rivnay. J, Inal. S, Collins. B, “Structural control of mixed ionic and electronic transport in conducting polymers”, Nat Commun, vol 7, 11287 (2016).
· 양 종 철, 김 세 민, 전기전도성 고분자를 이용한 생체 전극과 센서의 응용,KICNews, Volume 18, No. 6, 2015
· Laure V. Kayser, Darren J. Lipomi, Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS, Adv. Mater. 2018, 1806133
· Rivnay. J, Inal. S, Collins. B, “Structural control of mixed ionic and electronic transport in conducting polymers”, Nat Commun, vol 7, 11287 (2016).
· Hui Shi , Congcong Liu, Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review, Adv. Electron. Mater. 2015, 1, 1500017
· Hui Shi , Congcong Liu, Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review, Adv. Electron. Mater. 2015, 1, 1500017
· J. Y. Kim , J. H. Jung , D. E. Lee , J. Joo , Synth. Met. 2002 , 126 , 311 .
· C. Badre , L. Marquant , A. M. Alsayed , L. A. Hough , Adv. Funct. Mater. 2012 , 22 , 2723
· B. Fan , X. Mei , J. Ouyang , Macromolecules 2008 , 41 , 5971 .
· Qun Wan, Xia Guo, Zaiyu Wang, 10.8% Efficiency Polymer Solar Cells Based on PTB7‐Th and PC71BM via Binary Solvent Additives Treatment, Volume26, Issue 36, September 26, 2016, Pages 6635-6640.
· Lin Song, Weijia Wang, Composition–Morphology Correlation in
· PTB7-Th/PC71BM Blend Films for Organic Solar Cells, ACS Applied Materials & Interfaces, 2018.
· 이정구, 강동원, 유기 태양전지의 기술현황 및 시장동향, 정보분석보고서, 한국 과학기술정보연구원, 2017.
· 문상진, 김희주, 나노박막형 유기 태양전지의 기술 동향, Polymer Science and Technology Vol. 17, No. 4, August 2006
· Ye Huang, Edward J. Kramer, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships, Chem. Rev. 2014, 114, 14, 7006–7043
· Jin Young Kim, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 2006, 18, 572–576
· A Hayakawa, O Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer, Appl. Phys. Lett.90, 163517 (2007);
· Jin Young Kim, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 2006, 18, 572–576
· J. K. Kim, W. Kim, D. H. Wang, H. Lee, S. M. Cho, D.-G. Choi, J. H. Park, Langmuir 2013, 29, 5377 – 5382.
· 주효숙, 임동혁, “점착물성과 접촉각의 관계”, Journal of Adhesion and Interface, Vol.6, No.1 (2005)
· Jung Kyu Kim, Enhanced Performance and Stability of Polymer BHJPhotovoltaic Devices from Dry Transfer of PEDOT:PSS, ChemSusChem 2014, 7,1957 – 1963