· R. Rohde, Global Temperature Report for 2018, 2019
· H.Ritchie, M. Roser, Renewable Energy, 2018
· Srivastava, HC Nootan ISC Chemistry (12th) Edition 18, pp. 458–459, Nageen Prakashan (2014)ISBN *************
· Yu Luo, Ningsheng Cai, in Hybrid Systems and Multi-energy Networks for the Future Energy Internet, 2021
· Fuel CellsArchivedNovember 23, 2010, at the Wayback Machine
· Sammes, N., Bove, R., & Stahl, K. (2004). Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 8(5), 372–378.doi:10.1016/j.cossms.2005.01.001
· Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., Assabumrungrat, S.: Reviews on solid oxide fuel cell technology. Eng. J. 13, 65–83 (2009).
· Basu, R.N.: Materials for solid oxide fuel cells. Recent Trends Fuel Cell Sci. Technol. (2007).
· Marina, O.A., Pederson, L.R., Williams, M.C., Coffey, G.W., Meinhard, K.D., Nguyen, C.D., Thomsen, E.C.: Electrode performance in reversible solid oxide fuel cells. J. Electrochem. Soc. 154, B452 (2007).
· Lee, K.T., Yoon, H.S., Wachsman, E.D.: The evolution of low temperature solid oxide fuel cells. J. Mater. Res. 27, 2063–2078 (2012).
· 박재량 임탁형 외 5인 : SOFC용 LSCF/CGO 공기극의 제조 및 특성연구, 한국수소및신에너지학회논문집 vol.21, no.1, pp. 19-25 (7 p)(2010).
· Bastidas, D.M., Tao, S., Irvine, J.T.S.: A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 16, 1603–1605 (2006).
· Istomin, S.Y., Antipov, E.V.: Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ. Chem. Rev. 82, 686–700 (2013).
· A. Pesce, A. Hornés:3D printing the next generation of enhanced solid oxide fuel and electrolysis cells, Journal of Materials Chemistry Aissue 33 (2020)
· Lee, H. J., Choi, Y.-W., Yang, T.-H., Bae, B. C., 2014, “Hydrocarbon composite membranes with improved oxidative stability for PEM
· FC”, J. Korean Electrochem. Soc., 17(1), 44-48 .
· Yuk, J. O., Lee, S. J., Yang, T.-H., Bae, B. C., 2015, “Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC”, J. Korean Electrochem. Soc., 18(2), 75-80.
· Lee, S. Y., Kim, H. J., Nam, S. Y., Park, C. H., 2016, “Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells”, J. Membr. Sci., 26(1), 1-13.
· poggi-Varaldo H.M, H.F Giovanni., 2015, “Characteristics of a single chamber microbial fuel cell equipped with a low cost membrane”, November 2015International Journal of Hydrogen Energy 40(48)
· Korean Chem. Eng. Res., Vol. 58, No. 3, August,2020
· C.H Park, S.Y Lee, D.S Hwang etc. “Nanocrack-regulated self-humidifying membranes”,Nature volume 532, pages480–483 (2016)
· Global FCEV Volume Tracker, SNE Research, 2020,12
· Hydrogen Fuel Cell Vehicles are Future of the Automobile, Information Trends, 2016, 9
· 김선덕, 수소연료전지발전소에 공들이는 지자체, 서울경제, 2021,4
· Andy Hecht, “Pt price”, Investing, 2020,11
· KEA Brief Issues of Energy, No.174, 2017.9
· Ministry of Trade, Industry and Energy, Policy Directions for Spreading Electric Hydrogen Vehicles, 2018.06[27] KB금융지주 경연연구소
· 김재경, 수소연료전지 자동차(FCEV) 충천용 수소 시장조성을 위한 정책연구, 2018,3
· 김재경, 수소경제 로드맵 이행을 위한 세부전략과 과제, 2019,08
· 고체전해질 소재기술(1)-제3장 연료전지용 소재기술-신소재경제신문·재료연구소 공동기획 소재기술백서, 2016
· Kim J.H, Park J.H, Flash light sintering of screen printed Fe2O3 doped 8YSZ electrolyte for SOFC, 대한기계학회, 2019,11
· Gi-Woong Pak, Su-Won Yun, YonA, study of well-aligned ZnO nanorod array for PEMFC cathode catalysts using the hydrothermal growth method, 대한기계학회 춘추학술대회 , 2017.5, 299-300
· Jaehoon Choi.Jangyoung Choi, Research Status of Hydrogen Fuel Cell System Based on Hydrogen Electric Vehicle, 에너지공학 ISSN 1598-7981, 제29권 제4호(2020)
· 김정규, A study on spreading the supply of stationary fuel cells, 영남대학원, 2019
· 김신희, 국내 수소발전(연료전지) 현황과 과제,KDB미래전략연구소, 2021,07
· 이태호, 경기그린에너지 연료전지발전소 건설 및 운영 현황, 전기저널, 73-76(4Page) 20104,07
· JG Kim, TJ Lee, A Study on Spreading the Supply of Stationary Fuel Cells, 한국에너지기후변화학회 학술대회 , 2019.05, 33-33
· (1 pages)
· 홍원표, 강수현, 충남 수소연료전지 응용산업 활성화 방향: 지게차를 중심으로, 2018
· 홍보기, 정병헌, 김택수, 연료전지의 고분자 전해질막-전극 접합체용 전극의 분리방법과 그 장치, 2014,10
· 임동하, 자동차 분야 수소연료전지시스템 소개와 선박 적용을 위한 핵심기술, 2019
· 신중표, 이참래, 이홍기, 신재생에너지원인 수소연료전지의 원리와 응용, 기획시리즈, 2012
· Hamdi Abdi, Mohammad Salehimaleh, Fuel Cells, 2017
· Bilal Abderezzak, in Introduction to Transfer Phenomena in PEM Fuel Cell, 2018
· Avishek Majumder, Microbial fuel cells for harvesting electricity, Kjpargeter on Freepic, 2018,11
· Yu Hwa Lee , R&D Trends and Technology Development Plan on Portable Fuel Cell for Future Soldier System, Journal of the Korea Academia-Industrial cooperation Society, Vol. 21, No. 6 pp. 618-624, 2020
· Slobodan Petrovic, Eklas Hossain, Development of a Novel Technological Readiness Assessment Tool for Fuel Cell Technology, 2020,07