• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

근적외선 분광법을 이용한 콩과 이물질의 판별

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
7 페이지
어도비 PDF
최초등록일 2016.04.02 최종저작일 2011.05
7P 미리보기
근적외선 분광법을 이용한 콩과 이물질의 판별
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국산업식품공학회
    · 수록지 정보 : 산업식품공학 / 15권 / 2호
    · 저자명 : 임종국, 강석원, 이강진, 모창연, 손재용

    초록

    본 연구에서는 정상 콩과 이에 혼입되는 이물질을 판별하기 위해 900 nm에서 1800 nm의 파장대역에서 단색화장치가 장착된 근적외선 분광장치를 이용하여 획득된 콩과 이물질의 반사 스펙트럼의 세기를 이용하여 각각의 판별예측모델을 개발하고 그 성능과 판별정확도를 검증해보았다. 정상 콩 60 립과 이물질 60 점을 각각 2 회 반복하여 측정한 총 240 개의 반사스펙트럼에 대해서 모델 개발용인 calibration group으로 168 개를, 나머지 72 개는 개발된 모델을 예측하는 prediction group으로 나누어 사용하였다. 획득된 스펙트럼은 광원의 불안정함, 시료의 크기와 형태에서 기인되는 여러 변이들을 최소화하기 위해 다양한 수학적인 전처리를 적용하였으며 판별예측모델의 개발을 위해 PLS-DA와 SIMCA 방법을 사용하여 모델의 예측 성능과 판별율을 검토하였다.
    PLS-DA에서 모델 개발에 사용된 84 개의 정상 콩 스펙트럼 CLASS I은 적용된 모든 전처리에서 100%의 판별율을 보여주었으며 이물질 스펙트럼 CLASS II에서도 SNV 전처리를 제외하고는 모두 100% 이물질로 판별하여 분류하였다. 개발된 PLS-DA의 모델에 대한 prediction group의 검증에 있어서는 평균값 정규화 전처리 방법이 정상 콩과 이물질에서 100% 판별율을 보여주었다.
    SIMCA를 이용한 이물질 판별예측모델 개발은 PLS-DA와 비교할 때 상대적으로 저조한 판별율 결과를 나타냈으며 최대값 정규화와 일정 범위값 정규화의 전처리 방법을 적용한 모델이 평균 판별율 94.4%로 다소 양호한 결과를 보여주었다.
    따라서 콩에 혼입되어 있는 이물질을 판별하는 시스템을 개발하는 데 있어서 근적외선 분광장치를 이용하여 획득한 반사도 스펙트럼은 PLS-DA로 판별예측모델을 개발하고 최적의 전처리 방법을 적용한다면 콩과 이물질의 선별시에 보다 나은 판별율을 얻을 수 있을 것이다.

    영어초록

    The objective of this research was to classify intact soybeans and foreign objects using near-infrared (NIR) spectroscopy. Intact soybeans and foreign objects were scanned using a NIR spectrometer equipped with scanning monochromator. NIR spectra of intact soybeans and foreign objects in the wavelength range from 900 to 1800 nm were collected. The classification of intact soybeans and foreign objects were conducted by using partial least-square discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) multivariate methods. Various types of data pretreatments were tested to develop the classification models. Intact soybeans and foreign objects were successfully classified by the PLS-DA prediction model with mean normalization pretreatment. These results showed the potential of NIR spectroscopy combined with multivariate analysis as a method for classifying intact soybeans and foreign objects.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      이 자료는 내용의 깊이가 뛰어나고, 주제에 대한 체계적인 접근이 인상적이었습니다. 과제를 작성하는데 많은 도움이 되었습니다. 여러분께도 추천합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “산업식품공학”의 다른 논문도 확인해 보세요!

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 09월 09일 화요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    9:23 오전