총 1,133개
-
전북대 화공양론 3주차 레포트2025.01.171. 화학 반응 및 화학 물질 분석 이 보고서에서는 화학 반응과 화학 물질의 특성 및 분석에 대해 다루고 있습니다. 구체적으로 에탄올, 아세트산, 아세트알데히드 등의 화학 물질에 대한 반응 및 몰 질량 계산 등이 포함되어 있습니다. 2. 화학 공정 및 장치 설계 보고서에는 화학 공정 및 장치 설계와 관련된 내용이 포함되어 있습니다. 예를 들어 증류 공정에서의 유량 계산, 압력 강하 등이 다루어지고 있습니다. 3. 유체 역학 및 열역학 이 보고서에서는 유체 역학 및 열역학 개념이 적용되고 있습니다. 예를 들어 유체의 유동, 압력, 온...2025.01.17
-
열역학 ch.9 기체의 유동 ppt2025.05.121. 열역학 제 1법칙 열역학 제 1법칙에 따르면 에너지는 전환될 수 있지만 생성되거나 소멸되지 않는다. 이 법칙은 노즐에서 열에너지가 운동에너지로 전환되는 과정을 설명하는 데 사용된다. 2. 정체 상태 정체 상태는 유체의 속도가 0인 상태를 말한다. 이 상태에서는 정체온도, 정체밀도, 정체압력 등의 개념이 적용된다. 3. 임계 상태 임계 상태는 노즐의 유량이 최대가 되는 노즐목에서의 상태를 말한다. 이 상태에서는 임계온도, 임계밀도, 임계압력 등의 개념이 적용된다. 4. 노즐의 종류 노즐에는 단면 축소노즐과 단면 확대노즐(라발노즐...2025.05.12
-
양자역학과 확률밀도함수의 관계 탐색2025.11.121. 파동함수와 확률밀도함수 양자역학에서 파동함수는 양자 시스템의 모든 정보를 캡슐화하는 수학적 구조이다. 파동함수의 제곱을 취하고 정규화함으로써 확률밀도함수를 얻으며, 이는 특정 위치에서 입자를 찾을 가능성을 나타낸다. 확률밀도함수는 공간의 각 점에 확률 값을 할당하여 입자의 위치에 대한 확률분포를 제공한다. 특정 영역에 대한 확률밀도함수를 적분하면 그 영역 내에서 입자를 찾을 확률을 결정할 수 있다. 2. 불확실성 원리와 확률분포 베르너 하이젠베르크의 불확실성 원리는 위치와 운동량 같은 특정 물리적 특성을 동시에 무한한 정확도로...2025.11.12
-
HyperChem을 이용한 분자 모델링2025.11.161. 분자 모델링 소프트웨어 HyperChem은 분자의 구조를 설계하고 3차원 분석을 수행하는 분자 모델링 소프트웨어입니다. 이를 통해 원자 간 결합 특성과 화학적 성질을 이해할 수 있으며, 분자의 입체 구조를 시각화하고 분석하는 데 사용됩니다. 2. 분자 표현 기법(Rendering) 원자 간 결합을 나타내는 다양한 기법으로, 막대 모형(sticks), 튜브 모형(tubes), 공간 채움 모형(balls), 공-막대 모형(balls and cylinders), 점 모형(dots) 등이 있습니다. 이러한 기법들을 통해 3차원 공간에...2025.11.16
-
재료열역학 8강 자필 솔루션2025.11.171. 재료열역학 재료열역학은 재료의 열적 성질과 열역학적 원리를 다루는 학문 분야입니다. 물질의 상태변화, 에너지 변환, 엔트로피 등 열역학의 기본 개념을 재료과학에 적용하여 재료의 물리적, 화학적 성질을 이해하고 예측하는 데 중점을 둡니다. 이를 통해 신소재 개발 및 재료의 안정성을 평가할 수 있습니다. 2. 열역학 법칙 열역학의 기본 법칙은 제1법칙(에너지 보존), 제2법칙(엔트로피 증가), 제3법칙(절대영도)으로 구성됩니다. 이들 법칙은 재료의 상평형, 반응 가능성, 자발적 변화 방향을 결정하는 핵심 원리이며, 재료의 열적 거...2025.11.17
-
[세특][물리1] 물리1 심화탐구보고서 (교과세특, 수행평가, 심화탐구보고서)2025.01.151. 물리학의 구조설계법 적용 이번 보고서를 통해 물리학적 원리가 구조설계법에 어떻게 적용되는지 이해할 수 있었습니다. 하중 분산, 역학적 평형, 탄성과 비탄성의 개념이 다양한 구조물 설계에 필수적으로 적용됩니다. 이러한 원리를 바탕으로 혁신적인 기술이 개발되고, 실제 구조물에 적용되어 안정성과 효율성을 높일 수 있습니다. 앞으로 진로 분야에서 물리학 공부를 더 심층적으로 할 수 있도록 노력하겠습니다. 1. 물리학의 구조설계법 적용 물리학의 구조설계법은 복잡한 시스템을 이해하고 설계하는 데 매우 유용한 접근법입니다. 이 방법은 시스...2025.01.15
-
과도 과정의 연속방정식과 제1법칙 유도2025.11.161. 연속방정식 전 과정이 t 시간 동안 발생할 때 연속방정식은 dm/dt + Σme - Σmi = 0으로 주어진다. 이는 개방계에서의 질량보존 원리를 나타내며, 시간에 따른 계 내 질량의 변화는 유입 질량과 유출 질량의 차이로 표현된다. 연속방정식은 열역학 시스템에서 질량 흐름을 분석하는 기본 방정식이다. 2. 과도 과정의 제1법칙 과도 과정에 대한 제1법칙은 에너지 보존의 원리를 나타내며, 시간 동안 발생하는 에너지 변화는 에너지의 유입과 유출의 합으로 표현된다. 에너지 변화 = 에너지의 유입량 - 에너지의 유출량으로 정의되며,...2025.11.16
-
금오공대 신소재 재료열역학 중간기말 내용정리2025.01.271. 열역학 열역학은 열과 일에 대해 다루는 학문으로, 에너지와 일의 상관성을 기초로 계의 평형 상태에 영향을 미치는 변수를 이해하는 학문입니다. 열역학 제1법칙은 에너지 보존의 법칙으로, 고립계의 내부 에너지는 일정하며 에너지는 한 형태에서 다른 형태로 전환되어도 전환 전후의 에너지 총합은 변하지 않습니다. 열역학 제2법칙은 자발적 과정에서 엔트로피가 증가한다는 법칙으로, 비가역과정에서는 에너지 손실이 발생합니다. 2. 이상기체 이상기체는 분자 간 인력과 반발력이 작용하지 않고 완전 탄성체인 기체를 말합니다. 이상기체의 내부 에너...2025.01.27
-
Kelvin-Plank의 제 2 법칙에 대한 서술에서 위해되는 사이클 장치는 Clausius의 제 2 법칙에 대한 서술에도 위배됨을 증명2025.01.161. 열역학 제 2 법칙 열역학 제 2 법칙은 에너지 전환과 열 이동의 자연적 방향을 규정하는 중요한 원리입니다. 이 법칙은 여러 형태로 서술되며, 그 중 Kelvin-Plank와 Clausius의 서술이 대표적입니다. 두 서술은 서로 다른 방식으로 표현되지만, 동일한 기본 원칙을 공유합니다. Kelvin-Plank의 제 2 법칙은 '열을 하나의 열원에서만 받아서 이를 전부 일로 변환하는 것은 불가능하다'고 서술하며, Clausius의 제 2 법칙은 '열은 저온의 물체에서 고온의 물체로 자발적으로 이동할 수 없다'고 서술합니다. 이...2025.01.16
-
일반물리학실험(1) 13주차 단진자의 운동과 중력2025.05.091. 단진자의 운동 이 실험의 목적은 단진자의 주기를 측정하여 중력가속도의 값을 계산하고, 단진자의 진자의 길이와 추의 질량이 주기에 미치는 영향을 알아보는 것이다. 또한 진자의 위치 에너지와 운동에너지의 측정값을 통해 에너지가 보존된다는 사실을 증명하도록 한다. 2. 단진자의 운동방정식 단진자의 운동방정식은 접선 방향의 운동방정식으로 나타낼 수 있으며, 이를 통해 단진자의 각진동수와 주기를 구할 수 있다. 또한 중력가속도와의 관계식을 통해 중력가속도를 계산할 수 있다. 3. 단진자의 역학적 에너지 보존 단진자의 최저점에서의 속력과...2025.05.09
