총 180개
-
[A+]리튬이온 이차전지 제작 결과레포트2025.05.041. 리튬이온 이차전지 제작 이번 실험은 리튬이온전지의 기본 개념을 바탕으로 직접 cell을 만들어본 다음, 측정 결과값들을 그래프를 통해 분석해 보는 것이 주된 실험 목적이다. 실험과정을 통해 전극 제작, coin cell 조립 등의 과정을 자세히 살펴보고, CV 곡선, 충방전 그래프, 사이클 성능 등을 분석하여 리튬이온 이차전지의 작동 원리와 특성을 이해할 수 있었다. 2. 리튬이온 배터리의 필요성 리튬이온 배터리는 가볍고 에너지 밀도가 높으며 재충전하여 수천 번 재사용할 수 있다. 휴대용 전자제품의 소형화에 필수적이며, 전기자...2025.05.04
-
[전기회로설계실습] 설계 실습 7. RC회로의 시정수 측정회로 및 방법설계2025.05.131. RC회로의 시정수 측정 본 실험은 간단한 RC회로에서 시정수를 측정하는 방법 및 과도응답을 익히는데 의의가 있다. DMM의 내부저항을 측정하기 위해 저항과 DMM을 직렬 연결하여 전압의 분배법칙을 통해 값을 구해냈다. RC회로의 시정수는 저항과 커패시터값의 곱으로 구할 수 있고, 충전될 때는 입력 전압의 저항에 걸리는 전압이 0.368배가 될 때까지 걸리는 시간을 측정하고, 방전될 때는 입력 전압의 -0.368배가 될 때까지 걸리는 시간을 측정하였다. Function generator, 저항, 커패시터, Function gen...2025.05.13
-
클램퍼 회로 실험 예비결과보고서2025.11.181. 클램퍼 회로(Clamped Circuit) 클램퍼 회로는 입력 파형을 DC 레벨로 고정시키는 회로입니다. 커패시터를 회로에 직렬로 연결하고 다이오드를 출력과 병렬로 연결하여 구성됩니다. 커패시터가 충전되면서 직류전원의 역할을 하여 전체 DC 전압이 더해져 회로 전체가 기존보다 높거나 낮은 전압에서 파형을 이루게 됩니다. 2. 커패시터의 충전과 시상수 커패시터는 클램퍼 회로의 중요한 요소입니다. 커패시터에 충전이 되면서 직류 전원과 같은 역할을 하게 되어 입력 신호 파형의 상승을 이끕니다. 이를 통해 회로의 DC 레벨 시프트가 ...2025.11.18
-
리튬-공기 배터리용 전기촉매 합성2025.11.171. 금 나노입자 기반 플라즈모닉 촉매 금 나노입자(Au NPs)는 국소화된 표면 플라즈몬 공명(LSPR) 특성을 가지며, 빛과의 상호작용으로 핫 캐리어를 생성합니다. 이를 Ketjen Black 음극에 도입하면 Li2O2의 형성과 분해를 촉진하여 방전/충전 사이클 중 과전압를 감소시키고 에너지 효율을 향상시킵니다. 평균 크기 약 5nm의 금 나노입자는 삼나트륨 구연산염을 캡핑제로 사용하여 합성되며, 빛 조사 조건에서 현저한 성능 개선을 보입니다. 2. 리튬-산소 배터리의 전기화학 반응 Li-O2 배터리는 방전 시 음극에서 산소 환...2025.11.17
-
리튬이온배터리 구성 요소와 원리2025.01.231. 리튬이온배터리 구성 요소 리튬이온배터리는 양극재, 음극재, 전해질, 분리막 등 4대 구성 요소로 이루어져 있습니다. 양극재는 배터리의 용량을 결정하며, 음극재는 배터리의 수명을 결정합니다. 전해질은 리튬이온의 이동을 돕는 매개체이며, 분리막은 양극과 음극을 분리하여 배터리의 안전성을 보장합니다. 2. 리튬이온배터리 작동 원리 리튬이온배터리는 충전 시 양극에서 리튬이온이 분리되어 음극으로 이동하고, 방전 시 음극에서 리튬이온이 분리되어 양극으로 이동하면서 전자가 흐르게 되어 전류가 발생합니다. 이러한 리튬이온의 왕복 이동을 통해...2025.01.23
-
전기회로설계실습 결과보고서82025.05.151. 인덕터의 특성 이번 실습을 통해 인덕터의 특성을 이해하고 RL회로의 과도응답을 이해할 수 있었습니다. 사각파 형태로 전압이 입력될 때 인덕터를 포함한 회로의 전압이 exponential 형태로 증가하고 감소한다는 것을 확인했습니다. 또한 시정수의 5배 이상의 주기를 가져야 인덕터가 완전히 충전, 방전된다는 것을 알게 되었습니다. 2. RL 회로의 과도응답 이번 실습에서는 RL 회로의 과도응답을 실험적으로 확인할 수 있었습니다. 사각파 입력에 대한 저항과 인덕터의 전압 파형을 측정하여 이론적인 예상과 비교할 수 있었습니다. 주기...2025.05.15
-
설계실습 7. RC회로의 시정수 측정회로 및 방법설계 예비보곳서2025.05.161. DMM 내부저항 측정 DMM의 내부저항을 측정하는 방법은 회로에 전압원에 V(V)가 측정될 때, 전압원과 22MΩ, DMM을 직렬로 연결하면 DMM 내부저항 Rin을 구할 수 있다. DMM에 걸리는 전압을 측정하여 V_0라고 두면 KVL을 만족해야 하기 때문에 V_0 = {Rin} over {22M OMEGA +Rin} V (V) 식을 통해 Rin을 구할 수 있다. 2. RC time constant 측정 DMM의 내부저항과 2.2μF의 커패시터를 이용하여 RC time constant를 측정하는 방법은 회로에 전압원에 연결된...2025.05.16
-
이차전지 양극 소재 및 합성 방법 연구2025.11.141. 이차전지 기본 원리 및 구성요소 이차전지는 양극, 음극, 전해질, 분리막으로 구성된다. 양극에서는 방전 시 환원 반응이 일어나 전지의 용량과 평균 전압을 결정하고, 음극에서는 산화 반응이 일어나 전지의 수명을 결정한다. 전해질은 이온 이동의 매개체이며 분리막은 양극과 음극의 물리적 접촉을 차단한다. 이차전지는 충전과 방전을 반복할 수 있으며, 충전 시 전기에너지를 화학에너지로 저장하고 방전 시 화학에너지를 전기에너지로 변환한다. 2. 이차전지 양극 소재 종류 및 특성 양극 소재는 리튬 산화물로 구성되며 여러 종류가 있다. LC...2025.11.14
-
RC회로의 시정수 측정회로 및 방법설계2025.05.021. RC회로의 시정수 측정 이 보고서는 RC회로의 시정수를 측정하는 회로와 방법을 설계하는 것을 다룹니다. 주요 내용은 다음과 같습니다. 1) V와 R의 값을 측정하고 DMM을 저항과 전압에 직렬로 연결하여 전압 V0를 측정한 후 이를 이용해 Rin을 계산합니다. 2) DMM을 전류 측정 모드로 설정하고 스위치를 1번에 연결하면 초기 전류 I가 흐르고, 시간이 지남에 따라 전류 Ic가 감소하는데 이때 Ic가 초기 전류의 36.8%가 되는 시간이 RC 시정수입니다. 3) RC 시정수가 10μs이고 커패시터 용량이 10nF일 때 저항...2025.05.02
-
중앙대학교 전기회로설계실습 7. RC회로의 시정수 측정회로 및 방법 설계(예비) A+2025.01.271. DMM의 내부저항 측정 DMM의 내부저항을 측정하는 방법을 설계하여 제출하라. 1) DMM의 측정단위를 Ω으로 맞춘다. 2) DMM의 측정치를 10 Ω보다 크게 맞추고, 임의의 수십[MΩ] 정도의 저항의 저항값을 측정한다. 3) DMM의 측정단위를 Vdc로 바꾼다. 4) DC Power Supply 와 임의의 저항, DMM을 연결한다. 5) DMM에서 측정되는 전압을 통해 DMM의 내부저항을 구한다. 2. RC time constant 측정 DMM의 내부저항과 2.2 μF의 커패시터를 이용하여 RC time constant를 ...2025.01.27
