총 515개
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
데이터베이스 관리 시스템은 많은 장점도 있지만 단점도 있다2025.01.241. 데이터베이스 백업과 회복의 복잡성 데이터베이스의 백업과 회복 절차가 복잡한 이유는 데이터베이스 자체의 본질적인 복잡성에서 시작된다. 현대 데이터베이스는 방대한 양의 데이터를 담고 있고, 각종 필드와 세부 구성이 매우 정밀하게 얽혀 있다. 또한 데이터베이스 환경에서는 이중화와 복제 기술을 통해 데이터를 보호하려는 시도가 이어지고 있는데, 이는 역설적으로 시스템 장애 시 회복 절차를 훨씬 복잡하게 만든다. 결국 데이터베이스 구조가 복잡할수록 백업과 회복 절차 또한 더 어렵고 정교하게 설계되지 않으면 안 된다. 2. 백업 및 회복 ...2025.01.24
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 전략2025.01.191. 수요 예측 방법 과거 데이터 분석, 회귀 분석, 머신러닝 모델 등 다양한 방법을 활용하여 전동 킥보드의 수요를 예측할 수 있다. 과거 이용 데이터를 분석하여 시간대별, 요일별, 계절별 이용 패턴을 파악하고, 날씨, 인구 밀도, 교통 상황 등 다양한 변수와의 관계를 분석하여 수요를 예측할 수 있다. 또한 머신러닝 모델을 활용하면 복잡한 패턴을 정확하게 포착할 수 있어, 수요 예측의 정밀도가 향상될 것이다. 2. 필요한 데이터 수요 예측을 위해 필요한 데이터에는 과거 이용 데이터, 인구 및 인구 이동 데이터, 날씨 데이터, 교통 ...2025.01.19
-
4차 산업혁명과 인공지능2025.04.261. 인공지능 인공지능은 기계로부터 만들어진 지능을 의미하며, 컴퓨터와 소프트웨어, 기계를 통해 만들어진다. 인공지능에는 강 인공지능과 약 인공지능이 있는데, 강 인공지능은 인간처럼 자유로운 사고가 가능하고 프로그램에 의해 자아를 가지고 있는 반면, 약 인공지능은 자의식이 결여되어 특정 분야에 선택적으로 개발되어 생산성을 높이고 인간의 한계를 극복하기 위해 만들어진다. 또한 인공지능에는 머신러닝과 딥러닝이 있는데, 머신러닝은 다수의 사건경험을 가지고 패턴을 학습해 통계를 바탕으로 판단을 내리는 것이며, 딥러닝은 머신러닝의 발전된 형...2025.04.26
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 및 전략적 배치2025.01.171. 수요 예측 방법론 수요 예측을 위해 시계열 분석과 머신 러닝 알고리즘을 활용할 수 있다. 시계열 분석은 과거 패턴을 바탕으로 미래를 예측하는 방법이며, 머신 러닝은 복잡한 데이터에서 패턴을 학습하여 예측하는 방법이다. 각각의 장단점이 있으므로, 상황에 따라 적절한 방법을 선택해야 한다. 2. 필요한 데이터 유형 및 수집 방법 수요 예측을 위해 필요한 데이터에는 이용 기록 데이터, 고객 프로필 데이터, 외부 환경 데이터가 있다. 이용 기록 데이터는 서비스 애플리케이션에서, 고객 프로필 데이터는 데이터베이스에서, 외부 환경 데이터...2025.01.17
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
4차 산업혁명과 인공지능2025.04.261. 인공지능의 개요 인공지능(AI, Artificial intelligence)은 '마치 사람과 같이 자율적으로 사고하는 기계'를 의미합니다. 4차 산업혁명을 구성하는 핵심 IT 기술 중 하나로 인공지능 기술의 중요성이 부각되고 있습니다. 인간처럼 사고하고 행동하기 위해서는 데이터 및 데이터 관리, 데이터의 연산, 분석과 추론을 위한 알고리즘이 필요하며, 이를 통해 인간의 의사 결정을 보다 효율화하고 합리화하는 데 기여할 수 있습니다. 2. 인공지능 관련 최신 기술 동향 1) 엣지 AI: 엣지 컴퓨팅과 인공지능의 결합으로, 사용자...2025.04.26
-
인공지능의 개념 및 원리와 일상생활 및 교육 분야에서의 활용 사례2025.01.211. 인공지능의 개념 및 원리 인공지능(AI)은 인간의 학습 능력, 추론, 문제 해결 등의 지적 활동을 컴퓨터 시스템이 모방하도록 설계된 기술이다. 인공지능은 크게 강인공지능(AGI)과 약인공지능(ANI)으로 나뉘며, 핵심 원리 중 하나는 머신러닝(Machine Learning)이다. 머신러닝은 데이터로부터 패턴을 학습하고 예측을 수행하는 알고리즘을 개발하는 분야로, 지도학습과 비지도학습이 대표적이다. 2. 인공지능의 일상생활 활용 사례 일상생활에서 인공지능은 스마트폰의 음성 비서 기능, 교통 관리 시스템 등에 활용되고 있다. 20...2025.01.21
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
