총 704개
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.291. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 자연어를 이해하고 생성하는 데 중점을 둔 모델입니다. 방대한 데이터 학습, 자연어 생성 능력, 단일 모달리티 처리가 주요 특징이며, 챗봇, 문서 요약 및 생성, 번역 시스템, 코딩 보조 도구 등에 활용됩니다. 2. LMM(Large Multimodal Model) LMM은 텍스트, 이미지, 오디오, 비디오와 같은 다양한 형태의 데이터를 동시에 처리할 수 있는 모델입니다. 다양한 데이터 소스, 상호작용 능력, 복합적 태스크 수행이 주요 특징이...2025.01.29
-
공공기관 ChatGPT에 관한 이해2025.05.011. ChatGPT 기술 개요 ChatGPT는 대화형 AI 기술(LLMs 대화형 인공지능)로, OpenAI에서 개발했으며 2022년 11월 30일 베타테스트로 출시되었습니다. ChatGPT의 목적은 질문 또는 문의에 관한 유용한 답변을 제공하는 것입니다. 장점으로는 데이터 기반의 폭넓은 지식, 높은 정확성, 다국적 언어 학습, 지속적 학습 등이 있습니다. 단점으로는 과거 데이터 기반의 편향된 정보 제공 가능성, 공감 및 감성 지능 부족, 맥락 또는 어투에 관한 제한된 이해 등이 있습니다. 2. ChatGPT 사용방법 ChatGPT는...2025.05.01
-
Chat GPT 개념, 활용사례 및 향후전망2025.11.121. Chat GPT 개요 및 기술 Chat GPT는 오픈AI가 개발한 대규모 언어 모델로, GPT-3.5 기술을 기반으로 한다. 미리 훈련된 생성형 변환기(Generative Pre-trained Transformer)로서 딥러닝을 통해 스스로 언어를 생성하고 추론할 수 있다. 인간 사용자 피드백 기반 강화학습(RLHF)을 사용하여 대화를 최적화하며, 자연어로 컴퓨터에게 명령할 수 있는 특징이 있다. 2022년 12월 1일 테스트 버전이 공개되었으며, 대화형 질의응답, 메일 작성, 번역, 코딩 등 다양한 과제를 수행할 수 있다. ...2025.11.12
-
ChatGPT의 진화 3.5-turbo, 4.0, 4o의 비교와 혁신2025.01.151. ChatGPT 3.5-turbo ChatGPT 3.5-turbo는 2023년에 출시된 모델로, GPT-3 아키텍처를 기반으로 하며 속도와 효율성이 크게 향상되었습니다. 이 모델은 빠르고 효율적인 성능을 제공하며, 기본적인 텍스트 생성, 번역, 요약 등의 기능을 수행합니다. 2. ChatGPT 4.0 ChatGPT 4.0은 2024년에 출시된 모델로, GPT-4 아키텍처를 기반으로 합니다. 이 모델은 더 높은 성능과 향상된 언어 이해 및 생성 능력을 제공합니다. 특히 문맥을 더 잘 이해하고 자연스러운 대화를 생성할 수 있습니다....2025.01.15
-
한국방송통신대학교 언어의 이해 중간과제물2025.01.241. 컴퓨터 언어학 컴퓨터 언어학은 컴퓨터가 인간의 언어를 처리할 수 있도록 하는 방법을 연구하는 분야로, 1950년 미국에서 러시아어 자동 번역 시도로부터 시작되었다. 컴퓨터 언어학은 인간의 언어 지식을 활용하여 유용한 컴퓨터 시스템을 개발하는 것을 목적으로 하며, 최근 언어 연구에도 컴퓨터가 활용되고 있다. 주요 연구 분야로는 맞춤법 검사, 문법 검사, 음성 합성 및 인식, 기계 번역, 형태소 분석 등이 있다. 2. 맞춤법 검사 컴퓨터 언어학에서는 단어의 형태론적 구조를 분석하여 맞춤법 검사와 교정을 수행한다. 이를 위해서는 컴...2025.01.24
-
생성시스템에 대해 설명하시오2025.05.111. 생성시스템 생성시스템은 컴퓨터 프로그램이나 하드웨어를 사용하여 새로운 콘텐츠를 자동으로 생성하는 시스템을 말합니다. 이러한 시스템은 인공지능, 기계학습, 자연어처리 등의 기술을 활용하여 다양한 종류의 콘텐츠를 생성할 수 있습니다. 생성시스템은 예술, 문학, 음악, 게임, 디자인 등 다양한 분야에서 활용될 수 있으며, 콘텐츠의 품질과 다양성을 향상시킬 수 있습니다. 2. 생성시스템의 작동 방식 생성시스템은 다양한 방식으로 작동할 수 있습니다. 예를 들어, 자연어처리 기술을 사용하여 텍스트를 생성하는 시스템은 주어진 데이터를 분석...2025.05.11
-
딥러닝의 최신 동향: ChatGPT, Gemini, Lamma, Claude, Hyper Clovax 등2025.01.171. Gemini Gemini는 구글의 AI 연구팀이 개발한 차세대 언어 모델로, 인간 수준의 이해력과 자연스러운 대화를 목표로 하고 있습니다. Gemini는 다중 언어 지원, 컨텍스트 이해, 확장성 등의 특징을 가지고 있으며, 구글 검색 엔진, 음성 비서, 번역 서비스 등 다양한 애플리케이션에 적용되고 있습니다. 2. Lamma Lamma는 Meta(구 Facebook)의 AI 연구팀이 개발한 새로운 딥러닝 모델로, 텍스트 생성, 이미지 인식, 음성 인식 등 다양한 분야에서 활용될 수 있습니다. Lamma는 대규모 사전 학습, 적...2025.01.17
-
트랜스포머 모델링2025.05.061. 트랜스포머 모델 트랜스포머는 어텐션만으로 구성된 신경망 모델로, RNN이나 CNN의 단점을 보완한 모델입니다. 트랜스포머는 어텐션 메커니즘을 사용하며, 단어를 동시에 고려할 수 있고 입력에 순서 정보가 없다는 특징이 있습니다. 트랜스포머 인코더는 멀티헤드 셀프 어텐션으로 구성되어 있으며, 트랜스포머 디코더는 마스크드 멀티헤드 셀프 어텐션을 사용합니다. 2. CNN의 문제점 CNN은 커널을 이용하기 때문에 이미지의 특징을 추출하는데 있어 국소적인 부분만을 고려하는 문제점이 있습니다. 3. RNN의 문제점 RNN은 시간의 흐름에 ...2025.05.06
-
언어의 영역별 구분: 의미론, 음운론, 형태론, 통사론, 화용론2025.01.291. 의미론 의미론은 언어의 의미를 체계적으로 연구하는 분야로, 단어와 문장의 의미를 분석하고 해석하는 데 중점을 둔다. 의미론은 언어의 기본적인 의미 단위인 의미소(모픽)와 의미 단위 간의 관계를 규명하며, 단어 간의 동의어, 반의어, 다의어 등의 의미 관계를 탐구한다. 의미론적 연구는 자연어 처리(NLP) 분야에서도 중요한 역할을 한다. 2. 음운론 음운론은 언어의 음소와 음운 구조를 연구하는 분야로, 언어의 소리 체계와 소리 간의 관계를 분석한다. 음운론은 음소의 배열, 음운 변화, 음운 규칙 등을 다루며, 이는 언어의 발음 ...2025.01.29
-
IT와 경영정보시스템 2024년 2학기 방송통신대 중간과제물: 인공지능(AI) 학습을 위해 고안된 LLM(Large Language Model)과 LMM(Large Multimodal Model) 비교 및 Deep Learning과의 관계2025.01.261. 인공지능(AI)의 정의 1956년 미국의 수학자이자 과학자인 존 매카시가 '인공지능'이라는 용어를 처음 제안한 이후, 인공지능 연구는 지속적으로 발전해왔으며 여러 분야에서 인간의 능력을 점점 뛰어넘고 있다. 인공지능은 컴퓨터 과학과 방대한 데이터 세트를 활용하여 문제를 해결하는 기술 분야로, 머신러닝과 딥러닝이 인공지능의 하위 분야를 구성한다. 2. 인공지능의 역사 인공지능에 대한 논의는 1950년대부터 시작되었으며, 앨런 튜링, 마빈 민스키, 존 매카시 등의 선구자들이 기계의 사고 가능성을 탐구하며 인공지능 연구의 기반을 마...2025.01.26
