총 187개
-
재료에 관한 역사2025.04.281. 재료의 정의와 범위 재료란 어떤 물질을 구성하고 있거나 만들 수 있는 물질을 말한다. 재료의 범위는 매우 넓어서 일상생활에서 자주 접할 수 있다. 공학적인 관점에서 재료는 공산품이나 공업품을 만드는 데 사용되는 소재를 의미한다. 소재는 가공되지 않은 상태의 재료를 말하며, 재료는 소재로 만든 것을 의미한다. 재료에는 고체, 액체, 기체가 포함되지만 일반적으로 공업에 사용되는 재료는 고체 소재를 말한다. 2. 인류와 재료의 관계 인류는 언어와 도구 사용이 동물과 구분되는 특징이지만, 일부 동물들도 도구를 사용하는 예외가 있다. ...2025.04.28
-
5장문제2025.05.091. 기체 상수와 단위 변환 이 문제는 기체 상수의 다양한 단위 표현과 이들 간의 변환에 대한 내용을 다루고 있습니다. 기체 상수 R의 단위가 mmHg•cm3/mol•K로 나타내어질 때 기체 상수의 값을 묻는 문제 등이 포함되어 있습니다. 이를 통해 기체 상수의 개념과 단위 변환에 대한 이해도를 확인할 수 있습니다. 2. 이상 기체 방정식과 상태 변화 이 문제는 이상 기체 방정식을 활용하여 기체의 상태 변화를 계산하는 내용을 다루고 있습니다. 온도, 압력, 부피, 몰수 등의 변화에 따른 기체의 상태 변화를 이해하고 계산할 수 있는지...2025.05.09
-
재료열역학 8강 자필 솔루션2025.11.171. 재료열역학 재료열역학은 재료의 열적 성질과 열역학적 원리를 다루는 학문 분야입니다. 물질의 상태변화, 에너지 변환, 엔트로피 등 열역학의 기본 개념을 재료과학에 적용하여 재료의 물리적, 화학적 성질을 이해하고 예측하는 데 중점을 둡니다. 이를 통해 신소재 개발 및 재료의 안정성을 평가할 수 있습니다. 2. 열역학 법칙 열역학의 기본 법칙은 제1법칙(에너지 보존), 제2법칙(엔트로피 증가), 제3법칙(절대영도)으로 구성됩니다. 이들 법칙은 재료의 상평형, 반응 가능성, 자발적 변화 방향을 결정하는 핵심 원리이며, 재료의 열적 거...2025.11.17
-
나노기술2025.05.121. 생명공학 생명공학은 생명현상의 유전형질인 DNA과 세포의 구성성분, 구성물질을 인위적으로 조절·변형함으로써 생물의 양과 질을 향상시키거나 새로운 유용한 생물종을 개발하는 학문입니다. 생물학, 화학, 미생물학, 유전학, 면역학, 발생학, 생화학, 분자 생물학과 같은 기초 과학에 현대의 여러 가지 공학 기술을 접목한 것이 생명 공학 연구라고 볼 수 있습니다. 생명공학연구는 유용한 점도 많지만 인간의 존엄성 상실이라는 새로운 문제를 낳고 있습니다. 2. 나노기술 나노기술은 1992년 에릭 드렉슬러가 미국 의원들에게 분자기술에 관심을...2025.05.12
-
Cu와 Sn의 합금 제조 및 분석2025.04.291. 구리(Cu) 구리는 Al과 함께 비철 금속재료 중에서 가장 중요한 금속 원소중의 하나이며, 다른 금속에 비해 우수한 특징은 전기, 열의 양도체이며 전연성이 좋아 가공이 쉽고 내식성이 크며 쉽게 합금이 된다는 것이다. 구리의 물리적, 화학적, 기계적 성질에 대해 자세히 설명하고 있다. 2. 청동(Cu+Sn) 청동은 구리와 주석의 합금을 말한다. 청동은 인류가 처음 사용하기 시작한 금속으로, 청동기 시대라 하여 역사의 시대 구분에 인용될 정도로 예부터 이용되어 왔다. 주석의 분량을 늘리면 경도가 증가하므로 예전에는 무기 등에 이용...2025.04.29
-
자성물질의 습식합성 실험 보고서2025.11.141. 자성의 원리 자성은 물질이 가지는 자기적 성질로, 전자의 궤도운동과 스핀운동에 의해 발생한다. 전자는 원자핵 주위를 공전하고 자신의 축을 중심으로 자전하는데, 이러한 운동으로 인해 자기장이 생성된다. 전자의 스핀운동에 의한 자기모멘트가 궤도운동에 의한 자기모멘트보다 크므로 스핀운동에 의한 자기장이 더 강하다. 외부자기장의 영향에 따라 물질은 상자성체, 반자성체, 강자성체 등으로 분류된다. 2. 액체자석(Ferrofluid) 액체자석은 외부 자기장이 있을 때 강하게 자기화되는 액체로, 산화철과 페라이트 같은 자성 나노입자들이 액...2025.11.14
-
숭실대학교 신소재공학실험2 Oxidation 공정 결과보고서2025.01.211. ALD를 통한 TiO2 박막 형성 실험에서는 ALD 공정을 통해 p-type Si 기판과 p++-type Si 기판에 TiO2 박막을 형성하였다. 기판의 도핑 농도에 따라 증착된 박막의 두께가 달랐는데, 도핑이 적은 p-Si 기판에 비해 도핑이 많은 p++-Si 기판에서 상대적으로 박막이 얇게 형성되었다. 이는 도핑이 TiO2의 확산을 방해하거나 충돌을 유발하기 때문인 것으로 분석된다. 2. TiO2 박막 두께 측정 TiO2 박막의 두께는 Ellipsometry와 XRF 장비를 사용하여 측정하였다. 두 장비의 측정 원리가 다르...2025.01.21
-
재료역학의 학습 필요성과 근본 목적2025.11.171. 재료역학의 정의 및 역할 재료역학은 현대 공학 및 기술 분야에서 핵심적인 역할을 하는 학문으로, 재료의 특성과 행동을 규명하고 이를 바탕으로 안전하고 효율적인 제품 및 구조물을 설계하는 데 주목적을 둔다. 재료의 물리적 특성, 강도, 탄성, 피로 특성 등을 깊이 있게 이해하여 현실적인 문제에 대한 최적의 해결책을 찾아내는 학문이다. 2. 재료역학이 다루는 주요 분야 재료역학은 강도 및 탄성 분석, 피로 및 파괴 분석, 열전도 및 전기전도 분석, 복합재료 및 나노재료 연구, 가공 및 제조 공정 분석 등 다양한 분야를 다룬다. 이...2025.11.17
-
금속 나노입자의 습식합성 실험 보고서2025.11.141. 나노입자의 정의와 특징 나노입자는 1~100nm 크기의 입자로, 벌크 물질과 달리 넓은 표면적 대비 부피로 인해 새로운 광학, 화학, 물리 특성을 가진다. 입자 크기에 따라 에너지 준위가 불연속적으로 변하며, 발광하는 빛의 색깔이 변한다. 높은 표면에너지로 인해 뛰어난 향균성을 가지며, 촉매 활성 증가, 용해도 증가 등의 특징을 지닌다. 나노입자 제조 방식은 Top to Bottom(위에서 아래로)과 Bottom to Top(아래에서 위로) 두 가지 방법이 있다. 2. 나노입자의 응용분야 나노입자는 크기에 따른 색깔 변화를 이...2025.11.14
-
기존 건설재료와 미래의 건설재료, 복합신소재2025.11.141. 복합신소재(Composite Materials) 복합신소재는 두 가지 이상의 재료를 조합하여 각 재료의 장점을 활용하고 단점을 보완한 재료입니다. 21세기 산업 발전을 바탕으로 콘크리트 및 강재의 한계를 개선하여 등장했습니다. 부식 저항성, 유지관리 용이성, 우수한 성능을 갖추고 있으며, 기존 건설재료로 시공할 수 없는 특수한 상황에도 사용 가능합니다. 다양한 구성 재료별로 목적에 맞는 부재를 생산할 수 있고 펄트루젼공정 등을 통해 대량생산이 용이합니다. 2. 섬유보강복합재(FRP) 섬유보강복합재(Fiber Reinforced...2025.11.14
