총 207개
-
3세대 이후 이동통신 기술의 발전과 활용 분야2025.01.021. 이동통신 기술의 진화 이동통신 기술은 1G 아날로그 네트워크에서 5G 네트워크까지 큰 발전을 이루었습니다. 1G에서는 기본적인 음성 통화가 가능했고, 2G에서는 디지털화와 문자 메시지 도입, 3G에서는 고속 데이터 전송과 멀티미디어 콘텐츠 이용이 가능해졌습니다. 4G와 5G에서는 더욱 빠른 데이터 속도와 낮은 지연으로 사물인터넷, 자율주행차 등의 혁신적인 서비스가 가능해졌습니다. 2. 3세대 이동통신의 특징 3G 기술을 통해 웹 브라우징, 스트리밍, 파일 다운로드가 쉬워졌고, 멀티미디어 서비스가 가능해졌습니다. 또한 3G 네트...2025.01.02
-
A+ 광통신 - 비트 전송률 측면에서 NEP, SNR2025.01.041. NEP(Noise Equivalent Power) NEP(Noise Equivalent Power)는 수신기 감도를 나타내는 척도로, 광검출기 또는 검출기 시스템의 감도를 측정한 것입니다. 신호에 의한 신호전압과 잡음에 의한 잡음전압이 동일할 때의 입사 광 파워를 의미합니다. NEP는 주파수와 온도의 함수이며, 센서의 열적 반응시간과 주파수에 따른 센서잡음에 의해 결정됩니다. NEP가 낮을수록 저잡음 플로어에 대응하여 보다 민감한 검출기라고 할 수 있습니다. 2. SNR(Signal Noise Ratio) SNR(Signal ...2025.01.04
-
광통신 시스템의 전반사 원리와 광섬유 구조2025.11.151. 전반사(Total Internal Reflection) 빛이 경계면에서 100% 반사되는 현상으로, 경계면 안쪽의 굴절률이 바깥쪽보다 커야 하며 임계각 이상으로 입사해야 한다. 광섬유에서는 코어 구조와 코어보다 낮은 굴절률의 클래드로 구성되어 전반사를 이용해 빛의 손실을 최소화하고 신호 전달을 효율적으로 수행한다. 2. 광섬유(Optical Fiber) 구조 광통신에서 정보 전달을 위해 사용되는 광섬유는 빛이 진행하는 코어와 코어를 감싸는 클래드로 구성된다. 클래드의 굴절률이 코어보다 작아야 전반사가 발생하여 빛이 광섬유 내에...2025.11.15
-
전화 통신의 발전 과정2025.04.281. 전신의 발명 1809년 von Smmerring은 용액에 전기가 통과하면 거품이 생기는 현상을 관찰하여 전신기를 개발하였다. 이후 1820년 외르스테드와 앙페르가 전자기 법칙을 발견하였고, 1835년 Joseph Henry가 전신기를 발명하였다. 1844년 Samuel Morse가 모스 부호를 이용한 전신 메시지 전송에 성공하면서 전신 체계가 발전하게 되었다. 2. 유선 전화기의 발명 1876년 Alexander Graham Bell이 전화 특허를 얻었다. 그레이엄 벨과 그레이가 거의 동시에 유선 전화기를 발명했지만, 특허권 ...2025.04.28
-
아날로그 신호와 디지털 신호의 차이점2025.01.271. 아날로그 신호의 정의 아날로그 신호는 연속적인 변화가 있는 신호 형태이다. 이는 시간의 흐름에 따라 변화하는 전압이나 전류로 나타나며, 무한한 값의 연속적인 변화를 통해 정보를 전달한다. 아날로그 신호는 모든 값이 가능한 연속적인 신호이므로 소리, 빛, 온도 등 자연적으로 존재하는 대부분의 물리적 신호를 그대로 전달하는 데 적합하다. 2. 디지털 신호의 정의 디지털 신호는 이산적인 값으로 표현되며, 주로 이진수인 0과 1의 조합으로 정보를 전달한다. 디지털 신호는 연속적인 변화를 가지지 않고 단계별로 구분된 상태만을 가지므로,...2025.01.27
-
연세대학교 신호및시스템 프로젝트2025.11.131. 신호 처리 신호및시스템은 전자공학과 통신공학의 기초 학문으로, 아날로그 및 디지털 신호의 특성을 분석하고 처리하는 방법을 다룹니다. 푸리에 변환, 라플라스 변환 등의 수학적 도구를 이용하여 신호를 주파수 영역에서 분석하고, 필터 설계 및 신호 복원 등의 실무 응용을 포함합니다. 2. 시스템 분석 선형 시불변 시스템(LTI)의 특성을 분석하는 학문으로, 임펄스 응답, 주파수 응답, 안정성 판정 등을 다룹니다. 차분방정식과 미분방정식을 통해 이산 및 연속 시스템의 동작을 모델링하고 해석하는 방법을 학습합니다. 3. 디지털 신호 처...2025.11.13
-
아날로그 신호와 디지털 신호의 차이점2025.01.241. 아날로그 신호와 디지털 신호의 정의 아날로그 신호는 시간에 따라 연속적으로 변하는 신호를 의미하며, 특정 시간에서 신호 값이 연속적인 범위를 가질 수 있습니다. 디지털 신호는 이와 대조적으로, 시간의 이산적인 간격에서 정의되며, 특정 시간에서 신호 값이 0 또는 1과 같은 불연속적인 값을 갖습니다. 2. 파형의 형태 아날로그 신호는 연속적인 파형으로 나타나며, 정현파, 삼각파, 톱니파 등 다양한 형태를 가질 수 있습니다. 디지털 신호는 계단형 파형으로 나타나며, 일정한 시간 간격 동안 일정한 값을 유지하다가 시간이 지남에 따라...2025.01.24
-
디지털신호처리 4장. 샘플링과 에일리어링 요약정리 및 문제풀이2025.05.141. 디지털신호처리 디지털신호처리는 아날로그 신호를 디지털 신호로 변환하여 처리하는 기술입니다. 이 장에서는 샘플링과 에일리어링에 대해 설명하고 있습니다. 샘플링은 연속적인 아날로그 신호를 일정한 간격으로 이산적인 값으로 변환하는 과정이며, 에일리어링은 샘플링 과정에서 발생할 수 있는 왜곡 현상을 의미합니다. 이러한 개념들을 이해하고 문제를 해결하는 것이 중요합니다. 2. 샘플링 샘플링은 연속적인 아날로그 신호를 일정한 간격으로 이산적인 값으로 변환하는 과정입니다. 샘플링 주파수는 신호의 최대 주파수보다 2배 이상이어야 하며, 이를...2025.05.14
-
[중앙대전전][전기회로설계실습][결과보고서]-5.Oscilloscope와 Function Generator 사용법2025.05.151. 오실로스코프 오실로스코프를 통해 아날로그 파형을 디지털로 변환할 수 있다. 이 점을 활용하여 아날로그 값을 디지털 값으로 변환하여 실험값을 측정할 수 있다. 2. 함수발생기 함수발생기를 사용해 삼각파, 사각파, 구형파를 발생시켜 실험에 사용할 수 있다. Offset, Freq Vpp값을 조절해 가며 사용할 수 있다. 3. 아날로그 파형 디지털화 오실로스코프를 통해 자연에 존재하는 많은 아날로그 값을 이론적으로 사용할 때와 같이 숫자를 사용해 계산을 하거나 실험을 해볼 수 있다. 4. 함수발생기와 오실로스코프 연동 함수발생기에서...2025.05.15
-
디지털신호처리 3장. 스펙트럼의 표현 요약정리 및 문제풀이2025.05.131. 디지털신호처리 디지털신호처리는 아날로그 신호를 디지털 형태로 변환하여 처리하는 기술입니다. 이 장에서는 신호의 스펙트럼 표현에 대해 요약하고 문제를 풀이합니다. 스펙트럼은 신호의 주파수 성분을 나타내며, 이를 통해 신호의 특성을 분석할 수 있습니다. 2. 스펙트럼 스펙트럼은 신호의 주파수 성분을 나타내는 것으로, 신호의 주파수 특성을 분석하는 데 사용됩니다. 이 장에서는 스펙트럼의 표현 방법과 특성에 대해 다룹니다. 3. 주파수 분석 주파수 분석은 신호의 주파수 성분을 분석하는 것으로, 신호의 특성을 이해하는 데 중요한 역할을...2025.05.13
