총 301개
-
유화중합을 이용한 폴리스티렌 제조 실험2025.11.111. 유화중합(Emulsion Polymerization) 유화중합은 물과 유기용매의 혼합계에서 계면활성제를 사용하여 단량체를 미셀 형태로 분산시킨 후 중합하는 방법입니다. 이 방법은 높은 중합속도, 우수한 열 제거, 고분자의 높은 분자량 달성 등의 장점이 있으며, 페인트, 접착제, 라텍스 등 다양한 산업 분야에서 널리 사용됩니다. 2. 폴리스티렌(Polystyrene) 폴리스티렌은 스티렌 단량체가 중합되어 형성된 열가소성 고분자로, 투명성, 경직성, 낮은 비용 등의 특성을 가집니다. 식품 포장재, 단열재, 전자제품 케이싱 등 광범...2025.11.11
-
PVAc 중합 실험2025.05.141. 단계중합과 연쇄중합 단계중합은 고분자 합성 시 초기에 단위체 분자가 반응하여 없어지고 분자량이 단계적으로 높아지는 중합 반응이다. 연쇄중합은 연쇄반응 메커니즘에 의해 진행하는 중합으로, 각 반응마다 생성물의 중합도가 증가하고 말단기가 연쇄 전달체의 역할을 한다. 2. 라디칼 중합 라디칼 중합은 생장 중합체의 말단에 있는 원자가 유리전자 1개를 갖는 자유라디칼 상태에서 진행되는 중합반응이다. 라디칼과 라디칼이 반응하여 재결합 또는 불균화가 일어나며, 라디칼의 분해반응도 있다. 3. poly(vinyl acetate) poly(v...2025.05.14
-
A+ 고분자화학실험 벌크중합 실험보고서2025.04.301. 자유 라디칼 중합 자유 라디칼 중합이란, 자유 라디칼(Free radical)을 이용하여 단량체를 중합하는 고분자 합성방법 중의 하나이다. 이는 C=C 이중결합을 보유하고 있는 분자인 비닐계 고분자의 중합에 이용되는 가장 유용하고 보편적인 방법이다. 예를 들어, Polystyrene, Polymethylmethacrylaye, Poly(vinylacetate), Polybutadiene, branched PE 등이 그것이다. 중합하고자 하는 단량체에 라디칼을 처음 형성시키기 위해서 라디칼 개시제(Initiator)를 이용하는데...2025.04.30
-
[고분자합성실험] 메틸메타크릴레이트의 현탁중합 예비+결과 보고서(A+)2025.01.291. 고분자 화합물 합성 단량체를 라디칼중합시켜 고분자 화합물을 얻는 중합방법에서 용액중합은 중합반응에서 용매를 사용하여 벌크중합의 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합 또는 지주중합이라 한다. 단량체를 비활성의 매질속에서 0.01~1mm 정도입자로 분산시켜 중합하면 중합반응결과 얻어지는 고분자화합물은 비드같은 입자로 되어 침강하므로 이를 비드중합이라고도 하며 벌크중합이나 용액중합과 같은 반응기구로 반응이 진행된다. 2...2025.01.29
-
비닐 단량체 및 라디칼 개시제의 정제2025.01.171. 단량체 정제 모든 중합 반응에서 단량체의 순도는 매우 중요하며, 특히 불순물이 중합 금지제이거나 정지반응을 일으키는 물질인 경우 그 농도가 ppm 단위라도 중합 속도 및 분자량에 큰 영향을 미칠 수 있다. 단량체 정제 방법에는 단순 증류, 분별 증류, 공비 증류, 진공 증류, 재결정, 추출, 승화 및 크로마토그래피 등이 있다. 2. 중합 금지제 중합 금지제는 라디칼과 반응하여 중합 반응을 일으킬 수 없는 낮은 반응성의 라디칼이나 화합물을 생성하는 물질이다. 대표적인 중합 금지제로 hindered phenol이 있으며, 중합으로...2025.01.17
-
MMA의 현탁 중합 A+ 보고서2025.01.171. 현탁 중합 현탁 중합(Suspension polymerization)은 단량체를 라디칼 중합시켜 고분자 화합물을 얻는 중합 방법으로, 용매 대신 물과 같은 비활성의 매질을 사용하여 중합한다. 단량체를 비활성의 매질 속에서 0.01~1mm 정도의 입자로 분산시켜 중합하면 중합반응 결과 얻어지는 고분자 화합물은 비드(bead)와 같은 입자로 된다. 현탁 중합의 장점은 중합 열의 제거와 조절이 용이하고 취급이 쉬우며 구형의 고분자를 형성할 수 있다. 단점은 반응기 단위 용적당 수율이 낮고 입자 표면에 흡착된 첨가제의 제거가 완전하지...2025.01.17
-
고분자 화합물의 합성 예비보고서2025.01.231. 고분자 화합물 고분자는 큰 분자라는 의미로, 수백 개 이상의 작은 분자 유닛인 모노머들이 중합 반응을 통해 결합하여 형성된 큰 분자이다. 고분자는 폴리머라고도 불리며, 자연에서 발견되는 많은 물질들과 인공적으로 합성된 다양한 재료들의 기본 구조이다. 고분자의 예시로는 폴리에틸렌, 폴리스티렌, 폴리머클론, 폴리에스터 등이 있다. 2. 완충용액 완충용액은 pH의 변화를 제한하는 역할을 하는 용액으로, 산과 염기의 첨가로 인해 발생하는 수소 이온 또는 수산화 이온의 농도 변화를 최소화하는 역할을 한다. 완충용액은 일정한 pH 값을 ...2025.01.23
-
메틸메타크릴레이트의 벌크중합 A+ 결과보고서2025.04.281. 괴상중합(벌크 중합) 괴상중합(=벌크 중합)이란 용제가 없는 상태에서 단위체(單位體)만을 중합시키는 방법입니다. 벌크 중합이라고도 하며, 옛날부터 알려져 있는 가장 간단한 중합 방법입니다. 장치가 비교적 간단하고 반응이 빠르며 수율이 높고 고순도의 중합체를 얻을 수 있는 장점이 있지만, 중합계의 발열이 강하여 온도 조절이 어렵고 중합체의 분자량 분포가 넓어지며 중합체의 석출이 쉽지 않은 단점도 있습니다. 2. 개시제 개시제란 연쇄 반응을 시작하기 위해 반응계에 도입하는 물질입니다. 라디칼 연쇄 반응에서 라디칼을 제공하는 물질 ...2025.04.28
-
비닐 단량체 및 라디칼 개시제의 정제2025.01.271. 단량체 정제 단량체의 순도는 중합 반응에서 매우 중요하며, 특히 분순물이 중합 금지제이거나 정지 반응을 일으키는 물질인 경우 ppm 단위라도 중합 속도 및 분자량에 큰 영향을 미친다. 단량체 정제 방법에는 증류, 재결정, 추출, 크로마토그래피 등이 있으며, 중합 방법에 따라 적절한 정제 방법을 선택해야 한다. 스타이렌의 경우 페놀계 중합 금지제를 포함하고 있어 염기성 용액으로 정제할 수 있다. 2. 라디칼 개시제 정제 라디칼 중합에서 개시제의 순도 또한 중요하다. 라디칼 개시제는 과산화물계, 아조계, 기타 화합물 등으로 분류되...2025.01.27
-
[예비보고서] 스타이렌(styrene)의 유화중합2025.01.271. 유화중합 유화 중합은 부가중합에 의하며 중합될 수 있는 고분자의 생산에 사용되는 중합 방법입니다. 유화 중합반응계는 monomer, 용매, 유화제, 용매에 용해되는 개시제(주로 수용성)로 이루어집니다. 유화 중합은 용매에 의하여 반응액의 유동성이 좋은 상태로 유지되므로 반응열의 제거가 용이하고 높은 분자량을 가지는 고분자를 중합 속도가 높게 유지되는 상태에서 생산할 수 있습니다. 유화 중합에 의해 생산되는 중합체는 계면활성제와 같은 저분자량의 불순물을 함유하고 있으며, 이들을 분리하기가 어려우므로 중합체의 용도가 높은 순도를 ...2025.01.27
