총 184개
-
기체 상수 결정 예비+결과 레포트2025.05.041. 기체 상수 결정 이 실험에서는 산소 또는 이산화탄소 기체의 압력(p), 부피(V), 몰수(n), 온도(T)를 측정하여 기체 상수를 결정하였다. 실험 결과, 기체 상수 값은 74.38(mL·atm/mol·k)로 측정되었으며, 이론값인 0.082(L·atm/mol·k)와 비교하여 상대오차가 9.29%로 나타났다. 오차의 원인으로는 실험한 기체가 완벽한 이상기체가 아니라는 점과 산소가 물에 일부 녹아 들어가는 현상 등이 지적되었다. 1. 기체 상수 결정 기체 상수 결정은 화학 및 물리학 분야에서 매우 중요한 과정입니다. 기체 상수는...2025.05.04
-
기체흡수 결과보고서2025.01.021. 기체 흡수 이번 실험에서는 공기와 이산화탄소의 혼합기체를 물과 접촉시켜 흡수시키는 기체 흡수에 대하여 실험을 진행하였다. 기체와 액체가 서로 맞닿아 흐르면서 수용성인 이산화탄소 기체가 물에 녹는 것을 관찰하였다. 충전물로 채워있는 흡수탑에서 탑 상부로부터 물이 흘러내리고 탑 하부에서는 혼합기체가 올라가는데 이 과정에서 기체를 주사기로 포집하여 NaOH 용액과 반응시켜 기체의 조성이 얼마나 변하였는지를 계산하여 이산화탄소 기체의 흡수량과 흡수율을 구할 수 있었다. 1. 기체 흡수 기체 흡수는 매우 중요한 물리화학적 현상입니다. ...2025.01.02
-
기체상수의 결정 및 탄산염 분석 결과보고서2025.05.071. 기체상수 결정 이 실험의 목적은 이상기체 상태 방정식을 이용해 이상기체 상수 R을 결정하는 것입니다. 실험을 통해 탄산 소듐과 염산을 반응시켜 발생한 이산화 탄소 기체의 부피를 측정하고, 실험실의 대기압과 온도 등을 이용해 이상기체 상수 R을 구할 수 있습니다. 실험 결과 0.77%의 오차율이 나왔습니다. 2. 탄산염 분석 두 번째 실험에서는 미지 시료를 이용해 첫 번째 실험과 동일한 과정을 실험합니다. 반응식을 통해 탄산염의 몰수와 이산화 탄소의 몰수가 같다는 것을 알 수 있습니다. 따라서 이상기체 상태방정식에 탄산염의 질량...2025.05.07
-
이산화탄소의 헨리 상수 측정 실험2025.11.141. 헨리 법칙 헨리 법칙은 일정한 온도에서 액체에 용해된 기체의 양이 그 기체의 부분압에 정비례한다는 법칙입니다. 수식으로는 P = kH × c로 표현되며, 여기서 P는 기체의 부분압, kH는 헨리 상수, c는 용해된 기체의 농도입니다. 이 법칙은 탄산음료의 이산화탄소 용해, 혈액의 산소 용해 등 다양한 자연 현상을 설명합니다. 2. 이산화탄소의 용해도 이산화탄소는 물에 비교적 잘 용해되는 기체로, 온도와 압력에 따라 용해도가 변합니다. 온도가 낮을수록, 압력이 높을수록 더 많은 이산화탄소가 물에 용해됩니다. 이산화탄소는 물과 반...2025.11.14
-
탄산염 분석 실험2025.11.171. 탄산염의 화학적 성질 알칼리 금속(Li, Na, K, Rb, Cs, Fr)과 탄산염이 결합하여 M2CO3 형태의 화합물을 형성한다. 탄산염과 묽은 염산이 반응하면 이산화탄소 가스가 발생하는데, 이 반응식은 M2CO3 + 2HCl → 2M+ + 2Cl- + H2O + CO2↑이다. 발생한 이산화탄소의 양을 측정하면 알칼리 금속의 종류를 결정할 수 있다. 2. 이상기체 방정식의 응용 이상기체 방정식 PV = nRT를 이용하여 발생한 이산화탄소의 몰수를 계산할 수 있다. 여기서 P는 기압(atm), V는 이산화탄소의 부피(L), n...2025.11.17
-
[일반화학실험] 기체상수의 결정 결과보고서2025.01.171. 기체상수 결정 이번 실험에서는 염소산칼륨과 이산화 망간을 사용하여 산소 발생을 통해 기체 상수값을 구했습니다. 실험 결과 기체 상수의 실제 값 0.082보다 다른 값 0.0806이 나왔고, 오차율이 1.70%로 나타났습니다. 오차의 원인으로는 실험에 사용한 기체가 이상기체가 아니므로 PV = nRT가 정확하게 일치하지 않고, 연결 부위에서 기체가 새어 나가 측정된 부피보다 반응을 통해 생성된 부피보다 적었을 수 있습니다. 이번 실험을 통해 이상기체 상태방정식을 사용하여 기체상수 값을 구하는 식 R=PV/nT을 알 수 있었습니다...2025.01.17
-
이산화탄소의 헨리상수 보고서2025.01.231. 기체의 용해도와 Henry 법칙 1801년 영국의 화학자 Wiliam Henry는 기체의 용해도가 부분 압력 P에 정비례함을 실험적으로 관찰했다. 용액 위의 압력이 높아진다는 것은 단위 부피당 기체 분자수가 많아진다는 것을 의미하므로, 액체 표면에 충돌하는 기체 분자수가 증가해 결과적으로 기체가 녹아 들어갈 확률을 높이게 된다. 그러나 기체 분자가 액체에서 다시 빠져나가는 확률은 압력과 무관하므로, 기체의 용해도가 부분 압력에 비례한다는 사실을 알 수 있다. 2. 산-염기 적정 적정은 분석물(analyte)이라고 부르는 시료를...2025.01.23
-
기체의 몰질량 예비보고서2025.01.141. 몰 몰은 원자, 분자, 이온 등과 같이 매우 작은 입자의 양을 나타내는 묶음 단위로 정의된다. 국제단위계의 기본 단위이며 기호는 mol이다. 원소 1몰은 6.022 ×1023 개의 원자를 포함하며, 이 값을 아보가드로수라고 한다. 2. 몰 질량 몰 질량은 물질 1몰의 질량이다. SI 단위는 kg/mol 이지만 일반적으로는 g/mol을 쓴다. 1몰의 질량은 화학식량 뒤에 g을 붙인 값과 같다. 화학식량 뒤에 g/mol을 붙인 값과 같다. 원자는 원자량, 분자는 분자량, 이온 결합 물질은 화학식량 뒤에 붙이면 된다. 3. 부력 부...2025.01.14
-
이산화탄소의 분자량 측정 실험2025.11.141. 이산화탄소(CO₂)의 분자량 측정 일반화학실험에서 이산화탄소의 분자량을 측정하는 실험입니다. 이산화탄소는 탄소 원자 1개와 산소 원자 2개로 구성된 화합물으로, 이론적 분자량은 약 44 g/mol입니다. 실험을 통해 실제 분자량을 측정하고 이론값과 비교하여 실험의 정확도를 평가합니다. 2. 기체의 분자량 결정 방법 기체의 분자량을 결정하기 위해 이상기체 법칙(PV=nRT)을 활용합니다. 기체의 압력, 부피, 온도를 측정하고 기체의 질량을 구한 후 분자량을 계산합니다. 이 방법은 다양한 기체의 분자량 측정에 널리 사용되는 기본적...2025.11.14
-
기체상수 결정 실험 결과 보고서2025.11.181. 이상기체 상태방정식과 기체상수 이상기체에 적용되는 보일법칙, 샤를법칙, 아보가드로법칙을 하나의 관계식으로 표현한 이상기체 상태방정식(PV=nRT)에서 사용되는 기체상수 R을 실험을 통해 직접 결정하였다. 산소 기체 실험에서 R=0.0608atm·L/mol·K, 이산화탄소 기체 실험에서 R=0.0520atm·L/mol·K를 얻었으며, 이는 표준 조건에서의 이론값 0.082atm·L/mol·K와 비교하여 오차를 보였다. 2. Van der Waals 방정식과 실제기체 보정 이상기체 상태방정식을 실제기체 상태에 맞춰 보정한 Van ...2025.11.18
