총 753개
-
[A+] 단국대 고분자공학실험및설계2 <박막 및 용액의 형광 측정 (Photoluminescence)> 레포트2025.01.221. 반데르발스 힘 반데르발스 힘은 분자 내 전자밀도의 순간적인 변화에 의해 생성되는 분자 간 약한 상호작용으로, 대부분의 화합물에서 나타난다. 상호작용의 크기는 분자의 표면력에 의해 결정되며, 표면력이 클수록 분자 간 인력이 커진다. 분자 간 거리가 짧을수록 반데르발스 힘의 크기가 증가한다. 2. 형광과 인광 형광은 들뜬 상태의 전자가 빠르게 바닥 상태로 돌아오면서 방출되는 빛이며, 내부 양자효율이 25%로 낮다. 인광은 triplet exciton을 활용하여 100%의 내부 발광 효율을 만드는 원리이다. 3. 광발광 (Photo...2025.01.22
-
Viscosity of Liquids_결과보고서2025.05.111. 점성도 실험 결과를 보면 측정한 점성도는 온도가 올라감에 따라 대체적으로 감소하는 양상을 보였다. 이론적으로 액체의 온도가 상승하면 액체 분자의 운동에너지가 증가하고, 분자 간의 상호작용이 줄어들기 때문에 분자 사이의 결합력이 약해진다. 점성도는 분자 간의 상호작용에 크게 영향을 받는다. 2. 수소 결합 분자 구조를 살펴보면 물과 에탄올은 수소 결합을 이룰 수 있다. 반면에 아세톤은 수소결합을 할 수 없다. 물은 에탄올보다 많은 방향으로 수소결합을 할 수 있지만 물보다 에탄올의 점성도가 더 크게 측정되었다. 이는 분산력의 차이...2025.05.11
-
끓는점의 정의와 분자간 인력의 이론적 배경 정리 및 극성/무극성분자의 끓는점 차이 분석2025.01.221. 분자 간 인력과 끓는점 분자 간 인력이란 분자들 사이에 작용하는 서로 잡아당기는 힘을 말한다. 이러한 분자 간 인력의 세기는 분자의 물리적 성질을 결정한다. 대표적인 분자의 물리적 성질에는 증발열, 끓는점, 표면 장력, 점성도, 휘발성, 증기압이 있다. 분자 간 인력의 종류로는 이온 ? 쌍극자(극성분자), 수소 결합, 쌍극자 ? 쌍극자, 이온 ? 유발 쌍극자(비극성분자), 쌍극자 ? 유발 쌍극자, 분산력이 있다. 끓는점이란 액체 상태 물질의 증기압과 외부 압력이 같아 끓는 현상을 나타낼 때 온도를 말한다. 분자 간 인력이 클수...2025.01.22
-
서울대학교 물리분석실험 FRET(2024)2025.01.231. FRET(Forster resonance energy transfer) FRET은 두 dye 사이의 non-radiative energy transfer로, donor dye가 들뜬 상태가 되면 acceptor dye에게 에너지를 전달한 뒤 바닥 상태로 돌아가는 현상이다. FRET efficiency는 실험적으로 측정되며 이로부터 두 색소 사이의 거리를 계산할 수 있다. 반대로, TCSPC(Time correlated single photon counting)를 이용해 형광 lifetime을 측정하면 이를 이용해 FRET ef...2025.01.23
-
Atkins 물리화학 정리 (1장)2025.05.051. 완전기체 완전기체는 이상적인 기체로, 열역학에 대한 많은 식들은 완전기체와 관련된 식을 기반으로 유도됩니다. 기체의 압력이 0에 가까울 때 완전기체 법칙이 잘 맞습니다. 2. 상태변수 기체의 상태변수에는 압력, 온도, 부피 등이 있습니다. 압력은 힘을 면적으로 나눈 값이며, 온도는 열이 흐르는 방향을 결정하는 성질입니다. 3. 상태식 기체의 상태식은 실험적 근거에 따라 PV=nRT와 같은 형태로 표현됩니다. 이상기체 상태식은 아보가드로의 원리와 실험적 관찰을 정리한 것입니다. 4. 기체 분자 운동론 기체는 무시할 정도로 작은 ...2025.05.05
-
고등학교 화학2 교수학습계획 및 평가계획서 예시2025.01.151. 기체 기체의 온도, 압력, 부피, 몰수 사이의 관계를 설명할 수 있고, 이상 기체 방정식을 활용하여 기체의 분자량을 구할 수 있으며, 혼합 기체에서 몰 분율을 이용하여 분압의 의미를 설명할 수 있다. 2. 분자 간 상호 작용 분자 간 상호 작용을 이해하고, 분자 간 상호 작용의 크기와 끓는점의 관계를 설명할 수 있다. 3. 액체 물의 밀도, 열용량, 표면 장력 등의 성질을 수소 결합으로 설명할 수 있고, 액체의 증기압과 끓는점의 관계를 설명할 수 있다. 4. 고체 고체를 화학 결합의 종류에 따라 분류하고, 간단한 결정 구조를 ...2025.01.15
-
분자 간 인력과 표면장력2025.05.011. 분자 간 상호 작용 분자 사이의 힘에 대해 공부하고, 친수성 및 소수성에 대해 알아보았습니다. 친수성과 소수성 물질이 모세관 현상에서 어떠한 차이를 보이는지 확인하였습니다. 2. 표면장력 표면장력이란 액체가 고체와 접한 표면에서 액체의 표면적을 최대한 작게 만들도록 액체 내부에 작용하는 힘입니다. 표면장력이 발생하는 원인과 모세관 높이를 구하는 공식에 대해 알아보았습니다. 3. 모세관 현상 모세관 현상은 응집력과 부착력의 관계에 의해 발생합니다. 응집력이 부착력보다 큰 경우 표면이 볼록하고, 부착력이 응집력보다 큰 경우 표면이...2025.05.01
-
숭실대 신소재공학실험1) 5주차 고분자 점도 및 분자량 예비보고서2025.01.051. 고분자 점도 및 분자량 이 실험에서는 고분자의 점도와 분자량을 측정하는 방법에 대해 설명하고 있습니다. 점도는 유체 내부의 분자 간 상호작용으로 인해 발생하는 에너지 손실을 나타내는 물리량입니다. 고분자 용액의 점도 측정을 통해 고분자의 상대점도, 비점도, 환산점도, 대수점도, 고유점도 등을 구할 수 있습니다. 또한 Mark-Houwink 식을 이용하면 고분자의 평균 분자량을 추정할 수 있습니다. GPC(gel permeation chromatography)는 고분자의 상대 분자량과 분자량 분포를 측정하는 분석 방법으로, 고분...2025.01.05
-
공간적으로 갇힌 고분자의 구조 및 동역학 분석2025.11.181. Time Correlation Function (TCF)와 Relaxation Time Time Correlation Function은 고분자가 움직이면서 처음 형태를 얼마나 빠르게 잊어버리는지를 나타낸다. Relaxation time은 TCF 함숫값이 1/e가 될 때의 시간으로 정의되며, monomer 개수가 증가할수록 relaxation time이 길어진다. 이는 고분자의 길이가 증가하면 비선형적 움직임으로 인해 점도가 증가하고, 초기 구조 정보를 더 오래 유지함을 의미한다. 2. Mean Square Displacemen...2025.11.18
-
분자 구조 최적화 및 에너지 계산 이론2025.11.121. 분자역학(Molecular Mechanics) 분자역학은 원자 사이의 위치 에너지 합으로 분자의 안정성을 계산하는 방법이다. 분자를 구로 표현하고 용수철로 연결한 모델을 사용하며, 결합신축, 변각, 뒤틀림각, 정전기적, 반데르발스 상호작용 에너지의 합으로 전체 에너지를 표현한다. 계산량이 적어 원자 수가 많은 분자도 쉽게 계산할 수 있으나, 전자는 계산에 포함되지 않고 많은 파라미터가 필요한 단점이 있다. 2. 양자역학(Quantum Mechanics) 양자역학적 방법은 분자궤도(MO) 계산을 통해 3차원 구조, 에너지, 쌍극...2025.11.12
