총 41개
-
[A+] 다이오드1 보고서2025.05.151. 다이오드 이번 실험을 통해 다이오드는 5가 원소를 넣어 만든 N형 반도체와 3가 원소를 넣어 만든 P형 반도체를 붙여 한 쪽으로만 전기가 흐르게 하는 회로 소자라는 것을 알았습니다. 다이오드는 역방향일 때 전류가 흐르지 않고 순방향일 때 전류가 흐르지 않다가 전압이 한 지점을 넘어서면 전류가 흐르는 것을 알았으며 이것은 다이오드의 종류에 따라 문턱전압이 다르기 때문이라는 것도 알 수 있게 되었습니다. 2. 반도체의 전기적 특성 반도체는 절연체와 도체 사이 중간 정도의 전기저항을 갖습니다. 순수한 반도체의 전기전도도는 매우 낮지...2025.05.15
-
[세종대학교] [전자정보통신공학과] [기초반도체]2022 HW022025.05.031. 반도체 도핑 이 문제에서는 GaAs와 Si 반도체에 도핑된 불순물 농도와 도너, 억셉터 농도, 캐리어 농도 등을 계산하는 문제들이 다루어졌습니다. 도핑된 불순물 농도와 캐리어 농도 간의 관계, 그리고 이를 통해 반도체의 전기적 특성을 분석하는 방법이 설명되어 있습니다. 2. 반도체 페르미 준위 문제 3에서는 반도체 물질(Si, Ge, GaAs)의 페르미 준위가 정확히 밴드갭 중심에 있을 때, 특정 에너지 준위에서 전자가 점유될 확률과 빈 상태가 될 확률을 계산하는 문제가 다루어졌습니다. 이를 통해 반도체 물질의 전자 분포 특성...2025.05.03
-
P-N 접합의 접촉전위와 전류 특성2025.11.181. 접촉전위(Contact Potential) P-N 접합에서 P측의 정공과 N측의 전자가 확산되면서 접합부에 전기장이 형성된다. 이로 인해 발생하는 평형 상태의 전위차를 접촉전위 V0라 하며, 이는 이동 전하의 확산을 방해하는 내재적 전위 장벽 역할을 한다. 접촉전위는 V0 = (kT/q)ln(NaNd/ni²) 식으로 표현되며, 여기서 Na는 P측 수용체, Nd는 N측 공여체, ni는 본질 반도체의 캐리어 농도이다. 2. 공간전하 영역(Space Charge Region) 접합부에서 캐리어가 고갈되는 영역을 천이영역(transi...2025.11.18
-
A+ 광통신 - 15. Eye Diagram, Dark current, BER2025.01.041. Eye Diagram Eye Diagram은 광 또는 전기 신호의 누적ㆍ중첩된 전압 파형을 시간축 상에서 나타낸 것으로, 데이터 신호의 품질을 확인할 수 있는 방법입니다. 부호간 간섭이나 잡음에 의해 오염된 수신 신호의 품질을 살펴볼 수 있으며, 시리얼 통신에서 가장 기본적인 측정법입니다. Eye Diagram을 통해 최적의 샘플링 시간, 시간 오차에 대한 민감도, 잡음 여유, 최대 왜곡, 타이밍 지터, 심볼간 간섭 등을 확인할 수 있습니다. 2. Dark current Dark current는 광자가 장치에 들어가지 않는 경...2025.01.04
-
반도체 물리전자 기초 개념 및 특성2025.11.181. 반도체의 정의 및 분류 반도체는 도체와 절연체 사이에 위치하는 물질로, 특정 조건에서는 전류를 전도하고 다른 조건에서는 절연한다. 원소 반도체는 실리콘이나 게르마늄 같은 단일 원소로 구성되며 상대적으로 작은 밴드갭을 가진다. 화합물 반도체는 인듐 포스파이드(InP), 질화갈륨(GaN), 비소화갈륨(GaAs) 등 두 개 이상의 원소로 구성되며 우수한 전자 이동도를 가진다. 2. 에너지 밴드갭과 물질 분류 에너지 밴드갭(Eg)은 원자가대와 전도대 사이의 에너지 간격이다. 금속의 Eg는 거의 0eV이고, 반도체는 0~4eV 범위, ...2025.11.18
-
[세종대학교] [전자정보통신공학과] [기초반도체] 2022 HW032025.05.031. 반도체 도핑 문제에서는 p형 반도체 판에 빛을 조사하여 과잉 캐리어가 생성되는 상황을 다루고 있습니다. 도핑된 반도체의 특성과 과잉 캐리어의 농도 분포 및 시간에 따른 변화를 계산하고 그래프로 나타내는 것이 주요 내용입니다. 2. 전자 확산 전류 문제 3에서는 실리콘 내 전자 농도가 선형적으로 변하는 경우의 전자 확산 전류를 계산하는 문제를 다루고 있습니다. 3. 홀 및 전자 확산 전류 문제 4에서는 홀 농도와 전자 농도가 지수 함수적으로 변하는 경우의 홀 및 전자 확산 전류를 계산하는 문제를 다루고 있습니다. 4. 반도체 내...2025.05.03
-
MOSFET 기본특성 실험 결과보고서2025.11.171. MOSFET 동작 영역 MOSFET은 세 가지 동작 영역으로 구분된다. 차단 영역은 VGS가 문턱 전압보다 낮을 때 발생하며 전류가 흐르지 않는다. 트라이오드 영역은 VGD가 문턱 전압보다 클 때 나타나며 드레인 전류가 VDS에 따라 변한다. 포화 영역은 VGD가 문턱 전압보다 작을 때 발생하며 VDS가 증가해도 드레인 전류는 일정하게 유지된다. 본 실험에서 5.5V 이상의 VDS에서 포화 영역 특성을 확인했다. 2. NMOS와 PMOS의 특성 비교 NMOS는 게이트에 양의 전압을 인가하면 p형 기판이 n형으로 반전되어 채널이...2025.11.17
-
MOSFET 기본 특성2025.01.021. NMOS 동작 원리 NMOS의 기본적인 동작 원리는 소스와 드레인 단자 사이의 전압 및 전류 흐름을 제어하는 것입니다. NMOS는 스위치와 같이 작동하며, MOS 커패시터를 기반으로 합니다. 소스와 드레인 단자 사이에 위치한 산화층 아래의 반도체 표면은 게이트 전압을 인가함으로써 P형에서 N형으로 반전될 수 있습니다. 2. NMOS 동작 영역 NMOS는 차단 영역, 트라이오드 영역, 포화 영역의 세 가지 동작 영역을 가집니다. 각 영역에서 소스-드레인 전압, 게이트-소스 전압, 드레인 전류 사이의 관계가 다릅니다. 3. PMO...2025.01.02
-
MOSFET, MOSCAP 측정 실험 Report2025.01.121. MOSFET MOSFET은 전압 제어용 소자로 Gate, Source, Drain의 3 단자로 구성되어 있습니다. Gate에 인가되는 전압으로 Source와 Drain의 전류 흐름을 제어할 수 있으며, 제작 방식에 따라 증가형 MOSFET과 공핍형 MOSFET으로 구분할 수 있습니다. 본 실험에서는 Keithley 4200-SCS를 이용하여 MOSFET의 I-V 특성을 분석하였고, On-off ratio, Threshold Voltage, Subthreshold swing, Mobility, DIBL 현상 등을 확인하였습니다....2025.01.12
-
전류와 자기장, Lenz의 법칙 물리학실험2025.11.141. 비오-사바르 법칙 전류가 흐르는 도선에서 발생하는 자기장의 방향과 크기를 계산하는 법칙입니다. 도선의 길이 요소와 거리의 관계를 이용하여 자기장을 예측할 수 있으며, 외적(cross product) 성질에 의해 자기장의 방향이 결정됩니다. 실험에서 전류의 방향으로부터 자기장의 방향을 예측하는 데 사용되었으며, 이론값 계산에 활용되었습니다. 2. Lenz의 법칙 폐회로에서 유도 전류는 폐회로로 둘러싸인 부분을 통과하는 자기선속 변화를 방해하는 방향으로 자기장을 발생시킵니다. 실험에서 자석의 극을 멀리할 때 유도기전력의 방향이 변...2025.11.14
