총 71개
-
이산확률분포에 대한 요약2025.01.051. 확률 변수 확률 변수란 무작위로 실험을 했을 때 어떤 확률로 일어나는 각각의 결과를 수치적 값으로 표현하는 변수를 말한다. 쉽게 말해, 랜덤으로 진행되는 실험(ex. 동전을 랜덤으로 던져 그림 or 숫자가 나오는 실험)에서 일정한 확률(ex. 동전 앞이 나올 확률 1/2)을 가지고 발생하는 결과에 실수 값(ex. 앞=1, 뒤=0)을 부여하는 변수이다. 2. 확률 분포 확률 분포란 확률 변수가 가질 수 있는 모든 값에 대해 그 값이 일어날 가능성을 도수분포표나 그래프로서 표현한 것을 말한다. 확률 분포는 이산확률분포와 연속확률분...2025.01.05
-
이산확률분포의 유형과 특징2025.01.041. 이산확률분포 이산확률분포는 확률변수가 정수 값을 가지는 확률분포를 말합니다. 이항분포, 포아송분포, 초기하분포 등이 대표적인 이산확률분포의 유형입니다. 이들 분포는 각각 독립시행, 단위시간 내 사건 발생 횟수, 비복원추출 등의 특징을 가지고 있습니다. 2. 이항분포 이항분포는 n번의 독립적인 베르누이 시행에서 성공 확률이 p인 경우의 확률분포입니다. 시행 횟수가 늘어나면 이항분포가 정규분포에 근사해집니다. 이항분포는 페널티킥 성공률 등 두 가지 결과만 있는 실험에 적용할 수 있습니다. 3. 포아송분포 포아송분포는 단위 시간 또...2025.01.04
-
이산확률분포와 연속확률분포의 정의 및 차이점2025.11.141. 이산확률분포 이산확률분포는 유한 개 또는 셀 수 있는 값만을 가지는 확률 변수에 대한 확률 분포이다. 동전 던지기의 앞면 횟수, 주사위 눈의 숫자, 고객 구매 확률 등이 예시이다. 확률 질량 함수를 사용하여 각 값에 대한 확률을 할당하며, 각 가능한 값의 확률을 합산하여 확률을 계산한다. 2. 연속확률분포 연속확률분포는 무한 개의 값을 가질 수 있는 확률 변수에 대한 확률 분포이다. 온도, 시간, 길이, 속도 등이 예시이며, 실수 범위 내에서 무한한 가능한 값이 존재한다. 확률 밀도 함수를 사용하여 구간 내 확률을 계산하고, ...2025.11.14
-
이산확률분포의 특징 비교2025.01.181. 이산확률분포 이산확률분포는 성공과 실패의 확률 또는 매우 드문 사건을 정의하는 데 사용됩니다. 이항분포, 포아송분포, 초기하분포는 대표적인 이산확률분포의 유형입니다. 이항분포는 베르누이 시행을 독립적으로 반복하여 성공 횟수를 나타내며, 포아송분포는 매우 드문 사건의 확률을 측정하고, 초기하분포는 유한 모집단에서 무작위 표본을 추출할 때 성공 횟수를 나타냅니다. 2. 이항분포 이항분포는 특정 상황에서 특정 결과의 확률을 구하고 모든 가능성의 결과를 요약합니다. 예를 들어 공장 제품 검사, 유권자 투표 등의 상황에서 성공(1)과 ...2025.01.18
-
이산확률분포 요약 정리2025.11.161. 이산확률분포 확률변수가 취할 수 있는 값이 유한집합이거나 가산집합인 이산집합일 때의 확률분포입니다. 확률변수 X가 특정 값을 가질 확률을 표나 그래프로 나타내며, 확률분포는 확률변수의 종류에 따라 이산확률분포와 연속확률분포로 나뉩니다. 일상에서 개표방송의 막대그래프처럼 수치화된 값을 시각적으로 표현하는 것처럼, 확률도 표나 그래프를 이용하면 더욱 이해하기 쉬워집니다. 2. 이항분포 베르누이 시행을 n번 반복할 때 성공 횟수의 분포입니다. 베르누이 시행은 성공(확률 p) 또는 실패(확률 q=1-p)의 두 가지 결과만 가능한 실험...2025.11.16
-
이산확률분포에 대하여 요약 정리하시오2025.01.201. 이산확률분포의 개념 이산확률분포(Discrete probability distribution)란 확률변수의 두 가지 종류 중 하나인 이산확률변수의 확률이 어떻게 분포(Distribution)되어 있는지를 나타내는 것이다. 이산확률분포는 주로 그래프의 형태로 나타내는데, 이외에도 표의 형태 또는 방정식의 형태 등으로도 나타날 수 있다. 이때 이산확률변수란 그 확률변수가 유한하거나, 또는 무한수열의 값을 가지는 바 각각의 값을 셀 수 있다. 2. 이산확률분포와 연속확률분포 이산확률분포와 대조적인 개념은 연속확률분포(Continuo...2025.01.20
-
이산확률분포의 이해와 활용2025.11.131. 이산확률분포 이산확률분포는 이산확률변수에 대응하는 확률분포로, 확률변수가 취하는 값이 유한집합이거나 가산일 때 적용된다. 확률질량함수로 표현되며, 누적분포함수는 비약적 불연속으로만 증가한다. 각각 떨어져있지만 셀 수 있는 확률변수의 분포를 의미하며, 기업의 체계적인 경영관리에 다양하게 활용된다. 이항분포, 기하분포, 푸아송분포, 음이항분포 등이 대표적이다. 2. 이항분포 이항분포는 독립시행의 확률분포로, 연속된 n번의 독립시행에서 각 시행이 확률 p를 가질 때 적용된다. 베르누이 시행이라고도 하며, n=1일 때는 베르누이 분포...2025.11.13
-
경영통계학: 이산확률분포 요약2024.12.311. 이산 확률 분포 이산 확률 분포는 이산 확률 변수와 각각의 확률 변수에 따른 확률의 분포를 의미합니다. 주사위를 던졌을 때 나오는 확률 변수 X와 각 X에 대한 확률 P(X)로 나타낼 수 있습니다. 이러한 확률 변수와 확률을 표로 나타낸 것을 이산 확률 분포표라고 합니다. 2. 이항 분포 성공할 확률이 p인 베르누이 시행을 n번 반복할 때 일어나는 성공의 횟수를 X라고 하면, 이 확률 변수 X의 분포를 이항 분포라고 합니다. 이항 확률 변수 X가 취하는 값의 범위는 0, 1, 2, ..., n이며, 확률 질량 함수는 P(X=x...2024.12.31
-
이산확률분포: 이항분포, 포아송분포, 초기하분포의 특징 및 예시2025.05.091. 이산확률분포 확률분포는 가능한 모든 확률변수와 이것이 일어날 확률을 나타낸 것을 말한다. 이산확률분포는 확률변수 X가 가질 수 있는 값이 유한 집합이거나 가산집합일때 확률변수 X에 대응하는 확률분포이다. 즉, 확률변수 X가 1,2,3,4, … 이나 2,4,6,8,… 등과 같이 하나씩 셀 수 있는 값을 취하는 것을 말한다. 2. 이항분포 이항분포는 연속되는 n번의 독립적 시행에서 각각의 시행의 확률이 p를 가질 때의 분포이며, 이러한 시행을 베르누이 시행이라 말할 수 있다. 이항분포는 시행횟수(n)이 고정되어 있고, 각 시행에서...2025.05.09
-
이산확률분포: 이항분포, 포아송분포, 초기하분포 비교2025.11.151. 이항분포 이항분포는 성공과 실패 두 가지 결과가 있을 때 성공 확률이 일정하고 각 시행이 독립적인 분포입니다. 동전 던지기가 대표적 예시이며, 평균은 np, 분산은 np(1-p)로 계산됩니다. 큰 n일 때 정규분포에 근사하며, 이진 분류 문제와 성공률 측정에 활용되고 생물학, 의학, 경제학 등 다양한 분야에서 응용됩니다. 2. 포아송분포 포아송분포는 희귀한 사건이나 발생 빈도가 낮은 사건의 발생 횟수를 모델링하는 확률분포입니다. 사건 발생률이 일정하다는 가정을 기반으로 하며, 기대값과 분산이 모두 λ로 같다는 특징이 있습니다....2025.11.15
