
총 1,219개
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 딥러닝과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 사람처럼 언어를 이해하고 생성할 수 있는 능력을 갖춘 모델입니다. 이는 자연어 처리(NLP) 기술의 발전을 기반으로 하며, 딥러닝 기술을 활용해 언어의 문법적 구조와 단어 간 의미적 관계를 학습합니다. LLM은 챗봇, 자동 번역, 텍스트 요약 등 다양한 분야에서 활용되고 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트뿐만 아니라 이미지, 소리, 동영상 등 다양한 데이터를 통합적으로 처리할 수 있는 인공지능 ...2025.01.26
-
생성시스템에 대해 설명하시오2025.05.111. 생성시스템 생성시스템은 컴퓨터 프로그램이나 하드웨어를 사용하여 새로운 콘텐츠를 자동으로 생성하는 시스템을 말합니다. 이러한 시스템은 인공지능, 기계학습, 자연어처리 등의 기술을 활용하여 다양한 종류의 콘텐츠를 생성할 수 있습니다. 생성시스템은 예술, 문학, 음악, 게임, 디자인 등 다양한 분야에서 활용될 수 있으며, 콘텐츠의 품질과 다양성을 향상시킬 수 있습니다. 2. 생성시스템의 작동 방식 생성시스템은 다양한 방식으로 작동할 수 있습니다. 예를 들어, 자연어처리 기술을 사용하여 텍스트를 생성하는 시스템은 주어진 데이터를 분석...2025.05.11
-
4차 산업혁명 시대에서 미래 사회의 진로에 적응하기 위한 핵심 자원2025.01.241. 4차 산업혁명 시대에 필요한 인재상 4차 산업혁명 시대는 디지털 전환이 가속화되는 시대로, 이에 걸맞는 역량을 가진 인재가 필요하다. 이 시대에 부응하는 인재상은 단순히 기술적 능력을 보유하는 것에 그치지 않으며, 창의적 문제 해결 능력, 디지털 리터러시, 협업과 융합적 사고력 등 다양한 역량을 요구한다. 2. 4차 산업혁명 시대에서 미래 사회의 진로에 적응하기 위한 핵심 자원 미래 사회에서 성공적인 진로를 개척하기 위해 가장 중요한 다섯 가지 자원은 프로그래밍 능력, 데이터 분석 역량, 의사소통 능력, 창의적 문제 해결 능력...2025.01.24
-
[글로벌 비즈니스 애널리틱스] 비즈니스 애널리틱스의 역사와 정의, 관련 용어 설명2025.01.261. 비즈니스 애널리틱스의 역사 비즈니스 애널리틱스는 20세기 후반부터 본격적으로 발전하기 시작했다. 1960년대와 70년대에는 데이터 처리 기술의 발전이 주로 통계적 분석과 의사결정 지원 시스템(DSS)에 중점을 두고 있었다. 1990년대에는 데이터베이스 관리 시스템(DBMS)과 데이터 마이닝 기법이 등장하면서 보다 복잡한 데이터 분석이 가능해졌다. 2000년대 들어서는 빅데이터와 클라우드 컴퓨팅의 등장으로 인해 데이터 수집과 저장, 분석이 용이해지면서 비즈니스 애널리틱스가 더욱 발전하였다. 2. 비즈니스 애널리틱스의 정의 비즈니...2025.01.26
-
생성형 인공 지능 입문 족보 대비 문제은행(오프라인 기말고사, 세종대)2025.01.151. 생성형 인공지능이란? 생성형 인공지능은 데이터 전처리, 모델 학습, 결과 생성으로 구성되며, GPT와 ChatGPT와 같은 모델이 대표적입니다. 생성형 인공지능은 텍스트, 이미지, 소리, 동영상 등 다양한 콘텐츠 생성에 활용되지만, 데이터 의존성, 모델 복잡성, 윤리적 문제 등의 한계가 있습니다. 이를 해결하기 위해 데이터 증강, 전이 학습, 하드웨어 개선, 효율적인 알고리즘 개발 등의 방안이 필요합니다. 2. 언어 처리 신경망 개요 RNN은 순차 데이터 처리를 위해 필요하지만, 기울기 소실 문제가 있습니다. LSTM과 GRU...2025.01.15
-
정보통신망4A 기계학습 Machine Learning에 관하여 조사하여 설명하고 기계학습을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 기계학습 정의 및 필요성 기계 학습은 컴퓨터 시스템이 데이터를 분석하고 패턴을 학습하여 작업을 수행할 수 있는 능력을 갖추는 것을 의미한다. 기계 학습은 데이터 마이닝이나 기타 학습 알고리즘을 사용하여 지식을 추출하고 이를 경험기반으로 삼아 비슷한 상황의 미래 사건의 결과를 예측하는 컴퓨터 프로그램이다. 기계 학습은 대량의 데이터 처리, 복잡한 패턴 인식, 자동화된 결정, 개인화된 경험 제공, 의사 결정 지원, 지능적인 시스템 구축 등의 이유로 매우 중요하다. 2. 기계학습 장점과 문제점 기계 학습의 장점으로는 패턴 인식 및 ...2025.01.25
-
비즈니스 애널리틱스의 정의와 관련 용어 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics, BA)는 데이터를 분석하여 기업이 비즈니스 의사결정을 내리는 데 필요한 인사이트를 제공하는 과정이다. 비즈니스 애널리틱스의 역사는 기업이 데이터의 활용을 통해 의사결정을 최적화하려는 노력에서 시작되었다. 비즈니스 애널리틱스는 기술적 분석, 예측적 분석, 처방적 분석 등 세 가지 유형으로 나뉜다. 2. 데이터 과학 데이터 과학은 정형 및 비정형 데이터를 분석해 유용한 정보를 추출하는 과정으로, 데이터 수집 및 관리, 데이터 분석, 결과 시각화 및 커뮤니케...2025.01.26
-
Autoencoder 기반 추천 시스템 조사2025.05.071. Autoencoder 기반 추천 시스템 Autoencoder는 여러 규제 기법을 적용하여 다양한 application에 적용되고 있으며, 특히 추천 시스템인 collaborative filtering의 성능을 높이는 데 주로 사용된다. 기존 추천 시스템의 한계를 개선하는 방법으로 Autoencoder 기반 추천 시스템이 제시되었다. 본 논문에서는 Autoencoder 기반 추천 시스템에 대한 체계적인 검토를 실시하고 분류 체계를 제안하였다. 2. Autoencoder만을 기반으로 하는 모델 Autoencoder 기반 colla...2025.05.07
-
[김영평생교육원]학점은행제 경영학 경영정보시스템 과제 A+2025.05.051. 약한 인공지능과 강한 인공지능 약한 인공지능은 인간의 뇌처럼 사고하거나 문제를 해결할 수는 없지만 컴퓨터를 기반으로 한 인공적인 지능을 의미한다. 반면 강한 인공지능은 인간에 가까운 사고를 하여 문제를 해결할 수 있는 인공지능이다. 강한 인공지능은 약한 인공지능이 가진 기능을 갖출 뿐만 아니라 인간 수준의 복잡하고 다양한 생각을 가질 수 있고, 또 느낄 수 있다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 스스로 학습을 진행하여 인공지능의 성능을 발전시킬 수 있는 기술이다. 기계학습은 지도 학습, 비지도 학습, 준지도 학...2025.05.05
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26