총 617개
-
AI의 등장과 영향, 산업 분야별 적용 사례 및 전망2025.05.161. 새로운 산업 혁명, AI의 시작 ChatGPT는 인간과 유사한 텍스트를 생성하고 광범위한 질문에 높은 정확도로 응답할 수 있다는 점에서 호평을 받고 있습니다. 의료, 금융, 고객 서비스를 포함한 많은 산업은 다양한 프로세스를 자동화할 수 있고 개선할 수 있는 잠재력에 의해 ChatGPT를 채택하기 시작했습니다. 2. 생성형 AI 생성형 AI란 머신러닝 알고리즘을 통해 학습 데이터를 기반으로 새로운 콘텐츠를 만드는 기술입니다. 이 생성형 AI가 바로 ChatGPT입니다. 머신러닝은 컴퓨터가 주어진 데이터로부터 자체 학습을 하여 ...2025.05.16
-
자율주행자는 어떻게 학습하고 운전할 수 있는지 기술하시오2025.01.111. 자율주행차의 개념과 중요성 자율주행차는 미래의 교통 시스템의 핵심 기술 중 하나이며, 인간의 운전 오류로 인한 교통사고를 줄이고, 교통 체증을 해소하며, 환경문제를 해결하는 데 큰 역할을 할 것으로 기대된다. 이러한 기술의 발전은 우리 사회에 긍정적인 영향을 미칠 것이며, 자율주행차의 개념과 중요성에 대한 이해와 함께 적극적인 지원이 필요하다. 2. 자율주행차의 학습 방법 자율주행차의 학습 방법에는 머신 러닝과 딥 러닝의 활용, 데이터 수집과 분석이 중요한 역할을 한다. 이러한 기술들은 자율주행차가 환경을 인식하고 판단하는 능...2025.01.11
-
아마존 웹 서비스(AWS)의 클라우드 컴퓨팅 활동 요약2025.01.161. 아마존 클라우드의 주요 서비스 종류 및 기능 아마존 웹 서비스(AWS)는 컴퓨팅, 스토리지, 데이터베이스 등 다양한 클라우드 서비스를 제공하고 있다. 컴퓨팅 서비스로는 Amazon EC2, AWS Lambda 등이 있으며, 스토리지 서비스로는 Amazon S3, Amazon EBS 등이 있다. 데이터베이스 서비스로는 Amazon Aurora, Amazon DynamoDB 등이 있다. 이러한 다양한 클라우드 서비스를 통해 기업들은 IT 인프라를 효율적으로 운영할 수 있다. 2. 향후 예상되는 클라우드 서비스 향후 클라우드 서비스...2025.01.16
-
인공지능 시장 규모 현황과 IoT-AI 융합 기술2025.11.121. 글로벌 인공지능 시장 규모 2021년 기준 글로벌 인공지능 시장 규모는 327억 달러로 2020년 대비 45% 이상 증가했습니다. IDC 보고서에 따르면 2021년부터 2024년까지 연간 약 18%의 복합 성장률(CAGR)을 보일 것으로 예측됩니다. Tractica 보고서에 따르면 2019년 98억 달러에서 2025년 380억 달러로 증가할 것으로 예상되며, 의료, 금융, 제조, 소매 등 다양한 산업 분야에서의 적용으로 인해 지속적인 성장이 예상됩니다. 2. IoT(Internet of Things) 기술 응용 IoT 기술은 ...2025.11.12
-
사물인터넷과 빅데이터의 관계 및 기회와 위협요인2025.01.211. 사물인터넷과 빅데이터의 관계 사물인터넷 환경에서는 대량의 센서데이터가 발생하게 되며, 이를 분석하기 위해 머신러닝 기술이 중요해지고 있다. 사물인터넷에서 발생하는 대량의 데이터를 분석하여 유의미한 정보를 도출하고 미래를 예측하는 것이 빅데이터의 역할이다. 2. 사물인터넷과 빅데이터 활용 사례 코카콜라의 프리스타일 음료 자판기와 디컨스트럭션의 공사현장 관리 시스템 등 사물인터넷 기술과 빅데이터 분석을 활용한 사례를 소개하였다. 이를 통해 실시간 관리와 고객 맞춤형 서비스 제공 등의 효과를 얻을 수 있다. 3. 사물인터넷 시대의 ...2025.01.21
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
대학 부설 한국어 어학당을 AI로 분석 적용(인공지능과 데이터마이닝 과제)2025.05.141. 어학연수생 유치 예측 마케팅 기술을 활용하여 과거 10년간의 모집 인원 데이터를 분석하고 국가별, 지역별, 성별, 연령별, 성취도, 모집기관별 등의 데이터를 활용한 CRM 데이터를 구축할 수 있습니다. 이를 통해 시기에 맞는 맞춤형 마케팅 정보를 제공할 수 있습니다. 또한 모집 프로세스에 AI를 도입하여 서류 검토, AI 인터뷰, 챗봇 상담 등을 자동화함으로써 업무 프로세스를 개선하고 효율성을 높일 수 있습니다. 2. 교육시스템 개선 AI 학습 플랫폼을 개발하여 학생들이 본국에서 입국 전부터 사전 학습을 할 수 있도록 하고, ...2025.05.14
-
마이크로 모빌리티 서비스의 효과적인 수요 예측2025.01.201. 수요 예측 마이크로 모빌리티 서비스인 전동 킥보드의 수요를 정확하게 예측하기 위해서는 과거의 이용 기록 데이터와 더불어 계절적인 변동, 특별한 이벤트 등 다양한 외부 요인을 종합적으로 고려해야 합니다. 시계열 분석과 머신 러닝 알고리즘을 활용하여 실시간으로 변화하는 상황에 신속하게 대응할 수 있는 정교한 예측 모델을 구축하는 것이 중요합니다. 2. 데이터 수집 수요 예측을 위해서는 사용자의 주행 패턴, 이용 시간대, 이동 거리 등의 이용 기록 데이터와 날씨 정보, 이벤트 및 축제 일정 등 다양한 데이터를 수집해야 합니다. 이렇...2025.01.20
-
빅데이터 기술의 다양한 분야 적용사례2025.11.141. 의료 분야의 빅데이터 활용 빅데이터는 환자의 의료 기록, 생물학적 정보, 의료 이미지 및 생활 양식 데이터를 수집하여 분석함으로써 질병 예측과 예방에 큰 역할을 합니다. 정밀 의료를 통해 개별 환자의 유전자 정보와 생활 습관, 병력을 분석하여 맞춤형 치료를 제공하고, 예측 모델링으로 질병의 발병 가능성이나 진행 속도를 예측합니다. 머신러닝과 인공지능 알고리즘을 활용하여 의료 데이터를 분석하고 질병 예측 모델을 개발하며, 데이터 마이닝 기술을 사용하여 대규모 데이터 세트에서 의미 있는 특징을 발견합니다. 2. 금융 분야의 빅데이...2025.11.14
-
방송통신대학교(방통대) 정보통신망 2023년 중간 과제물 만점 리포트2025.01.241. 디지털 배지 디지털 배지는 기존의 물리적인 증명서와 달리 개인정보 노출을 최소화하고, 유효성 검증이 간단하며, 분실 위험이 없고, 추가 정보 제공이 용이하다는 장점이 있다. 디지털 배지는 블록체인 기술과 결합하여 변조가 어렵고 발급 기관이 사라져도 검증이 가능하며, 머신러닝 기술과 결합하여 사용자에게 맞춤형 교육 과정을 추천해줄 수 있다. 디지털 배지의 도입을 위해서는 표준화와 신뢰할 수 있는 통합 데이터베이스 구축이 선행되어야 한다. 2. 개인정보 보호 기존의 물리적인 증명서는 개인정보를 과도하게 포함하고 있어 증명서를 제출...2025.01.24
