총 855개
-
나일론 합성 실험 결과 보고서2025.11.121. 나일론 합성 나일론은 인공 고분자 물질로, 축합 중합 반응을 통해 합성된다. 이 실험에서는 두 가지 단량체가 반응하여 긴 사슬 구조의 고분자를 형성하는 과정을 관찰한다. 나일론 합성은 화학 공학에서 중요한 고분자 재료 생산 기술이며, 섬유, 플라스틱 등 다양한 산업 분야에 응용된다. 2. 축합 중합 반응 축합 중합은 두 개 이상의 단량체가 결합하면서 작은 분자(주로 물)를 방출하는 중합 반응이다. 나일론 합성에서 카르복실산과 아민 기능기가 반응하여 아미드 결합을 형성한다. 이 반응은 온도, 촉매, 반응 시간 등의 조건에 따라 ...2025.11.12
-
유기화학실험 라디칼 중합반응 실험보고서2025.11.121. 라디칼 중합반응 라디칼 중합반응은 자유 라디칼을 개시제로 사용하여 단량체들이 연쇄적으로 결합하는 중합 반응입니다. 개시, 전파, 종결 단계를 거쳐 고분자 물질이 형성되며, 플라스틱, 고무 등 다양한 고분자 재료 생산에 널리 사용됩니다. 반응 조건, 온도, 촉매 등에 따라 생성물의 특성이 달라집니다. 2. 중합반응 메커니즘 중합반응은 개시(initiation), 전파(propagation), 종결(termination) 세 단계로 진행됩니다. 개시 단계에서 라디칼이 생성되고, 전파 단계에서 단량체가 계속 첨가되며, 종결 단계에서...2025.11.12
-
중공실 emulsion 중합 결레2025.01.131. 유화중합 메커니즘 유화중합의 메커니즘은 입자 기핵, 입자 성장, 입자 성장 종결로 3단계로 나뉨. 입자 기핵 단계에서는 중합시간과 입자수와 중합속도가 증가하며, 입자 반지름이 커짐에 따라 고분자 입자들은 수용액상에 녹아 있는 유화제의 흡착으로 안정화한다. 입자 성장 단계에서는 고정된 수의 입자들이 주위의 단량체 방울들로부터 단량체를 일정하게 공급받으면서 단량체에 의해 포화상태로 유지되며 중합이 진행된다. 입자 성장 종결 단계에서는 고분자 입자 내에 존재하는 단량체 농도 및 중합속도가 지속적으로 감소하다가 단량체 방울들이 모두 ...2025.01.13
-
숭실대 신소재공학실험1) 9주차 고분자 열적물성 결과보고서2025.01.051. 고분자 열적물성 이 실험에서는 DSC와 TGA를 이용하여 PVAc와 PLA 고분자 블렌드의 열적 특성을 분석하였다. DSC 분석 결과, PLA 함량이 증가할수록 유리전이온도와 용융온도가 증가하였으며, 결정화 엔탈피가 감소하였다. 이는 PLA와 PVAc의 상용성으로 인한 것으로 판단된다. TGA 분석 결과, PLA가 PVAc보다 열 안정성이 높은 것으로 나타났으며, 블렌드 조성에 따라 열분해 온도가 변화하였다. 실험 결과와 Fox 방정식을 통한 예측값 사이에 차이가 있었는데, 이는 DSC 측정 조건의 영향 및 고분자 물성 예측의...2025.01.05
-
숭실대 신소재공학실험1) 6주차 고분자 가교와 UV-vis spectroscopy 결과보고서2025.01.051. 고분자 가교 실험에서는 PVA와 Boric acid를 이용하여 하이드로젤을 제조하였다. Boric acid는 가교제로 작용하여 PVA 사슬 간 가교 결합을 형성한다. Boric acid의 양이 증가할수록 가교 밀도가 높아져 겔의 물리적 특성에 영향을 미친다. 가교 밀도가 높을수록 겔의 팽윤이 감소하고 염료 분자의 이동이 제한되어 UV-vis 분광 분석 결과 흡광도가 낮게 나타났다. 2. UV-vis spectroscopy 실험에서는 제조된 하이드로젤에서 염료가 유출되는 정도를 UV-vis 분광 분석을 통해 측정하였다. 가교제인...2025.01.05
-
고분자 기계물성 실험 결과 보고서2025.01.051. 고분자 기계물성 이 실험에서는 UTM(Universal Testing Machine)을 사용하여 PVAc(polyvinyl acetate)와 PLA(polylactic acid) 필름의 기계적 물성을 측정하고 분석하였습니다. 실험 결과, PVAc는 연성(ductile) 재료로 변형률이 크고 소성 변형 현상을 보였으며, PLA는 취성(brittle) 재료로 변형률이 작고 쉽게 파단되는 특성을 나타냈습니다. 또한 PLA의 함량이 증가할수록 탄성계수가 증가하여 더 단단한 물질임을 확인할 수 있었습니다. 이를 통해 고분자 재료의 기계...2025.01.05
-
숭실대 신소재공학실험1) 13주차 고분자 모폴로지 및 표면특성 결과보고서2025.01.131. 고분자 모폴로지 및 표면특성 이 실험에서는 전자현미경(SEM)의 사용법과 원리를 이해하고 DOPA가 코팅된 PVDF의 모폴로지를 분석하였습니다. DOPA(3,4-Dihydroxy-L-phenylalanine)를 PVDF에 Dip coating하였으며, Contact angle을 이용하여 PVDF의 물과 유기용매의 접촉각을 측정하였습니다. 1. 고분자 모폴로지 및 표면특성 고분자 모폴로지와 표면특성은 고분자 재료의 성능과 응용에 매우 중요한 요소입니다. 고분자 재료의 미세구조와 표면 특성은 기계적, 열적, 전기적, 광학적 특성 ...2025.01.13
-
고분자 합성 실험보고서 A+ (영재고생)2025.05.051. 고분자의 정의와 중합 반응 고분자란 일반적으로 분자량이 10000 이상이며, 사슬이 대부분 공유결합으로 되어 있는 화합물이다. 고분자화합물은 탄소의 유무에 따라 무기계열 고분자와 유기계열 고문자로 분류한다. 유기계열 합성고분자화합물은 적당한 저분자화합물에서 축합반응, 첨가반응, 중합반응 등이 반복되어 합성된다. 중합반응이란 어떤 화합물 분자가 2분자 이상 결합, 보다 큰 분자가 되는 반응이다. 2. 축합반응의 종류 및 특징 축합반응이란 유기 화합물 두 분자 이상의 분자가 단계적인 반응 과정을 통해 간단한 분자가 제거되며 새로운...2025.05.05
-
숭실대 신소재공학실험1) 5주차 고분자 점도 및 분자량 예비보고서2025.01.051. 고분자 점도 및 분자량 이 실험에서는 고분자의 점도와 분자량을 측정하는 방법에 대해 설명하고 있습니다. 점도는 유체 내부의 분자 간 상호작용으로 인해 발생하는 에너지 손실을 나타내는 물리량입니다. 고분자 용액의 점도 측정을 통해 고분자의 상대점도, 비점도, 환산점도, 대수점도, 고유점도 등을 구할 수 있습니다. 또한 Mark-Houwink 식을 이용하면 고분자의 평균 분자량을 추정할 수 있습니다. GPC(gel permeation chromatography)는 고분자의 상대 분자량과 분자량 분포를 측정하는 분석 방법으로, 고분...2025.01.05
-
나일론의 합성2025.01.131. 고분자 화합물 고분자 화합물은 많은 수의 단위체인 소단위체들이 반복적으로 결합된 분자를 말한다. 고분자 화합물에서 탄소원자는 본질적으로 무제한의 길이를 가진 안정한 사슬로 이어질 수 있다. 고분자는 저분자량의 수많은 단위들이 공유결합으로 연결되어 이루어진 고분자량의 물질을 말한다. 작은 분자들이 반복적으로 합쳐져서 고분자를 형성하는 과정을 Polymerization이라 하며, 이때 작은 분자들을 단량체 (monomer)라 한다. 2. 중합 반응 중합 반응에는 축합 반응과 첨가 반응이 있다. 축합 반응은 단량체들이 결합 시에 물...2025.01.13
