
총 83개
-
중앙대 전기회로설계실습 결과보고서12_수동소자의 고주파특성측정방법의 설계 (보고서 1등)2025.05.101. 수동소자의 고주파특성 측정 실제 회로에서 사용되는 회로소자의 등가회로를 이해하고 이 소자들이 넓은 주파수 영역에서 어떻게 동작하는지 이해하기 위해 실습을 진행하였다. RC 직렬 회로와 RL 직렬 회로의 주파수 응답을 측정하여 분석한 결과, 일정 주파수 이상에서 커패시터와 인덕터가 각각 인덕터와 커패시터의 성향을 띄기 시작하는 것을 확인하였다. 이를 통해 회로소자의 고주파 특성에 대한 이해를 높일 수 있었다. 1. 수동소자의 고주파특성 측정 수동소자의 고주파 특성 측정은 전자회로 설계 및 분석에 매우 중요한 부분입니다. 고주파 ...2025.05.10
-
[기초전자실험 with pspice] 16 미분회로와 적분회로(미적분회로) 예비보고서 <작성자 학점 A+>2025.04.281. 미분회로 입력파형을 미분하여 출력하는 회로를 미분회로라 한다. 미분회로는 자동 제어의 조절기나 아날로그 컴퓨터의 연산기에 사용된다. RC 미분회로와 RL 미분회로를 실험하여 구형파와 정현파의 미분파형을 확인할 수 있다. 2. 적분회로 입력파형을 적분하여 출력하는 회로를 적분회로라 한다. RC 적분회로와 RL 적분회로를 실험하여 구형파와 정현파의 적분파형을 확인할 수 있다. 3. RC 미분회로 RC 미분회로에서 커패시터 C를 흐르는 전류 i의 식을 통해 출력전압 V0가 입력전압 V1의 미분이 됨을 확인할 수 있다. 4. RL 미...2025.04.28
-
RC, RL 회로응답2025.05.161. RC 직렬 회로 RC가 직렬로 연결된 1차 회로이며, 1차 미분 방정식을 통해 해석 가능합니다. 자연(방전) 응답은 V0가 t=0일 때 커패시터 전압 Vc(0)이고 회로의 시정수는 RC입니다. 시정수는 전압이 저항 손실에 의해 감쇠하는 비율을 나타냅니다. 계단 응답(충전)은 Vf가 응답의 최종 값으로 정상 상태 응답입니다. 시정수는 자연 응답에서와 동일한 방식으로 계단 응답에 영향을 미칩니다. 계단 응답의 시정수는 최종 값(Vf)의 63.22%에 도달하는데 걸린 시간을 측정합니다. 2. RC 직렬 회로 실험 실험 1에서는 R1...2025.05.16
-
기초회로실험 RLC회로의 과도응답 및 정상상태응답 실험 예비보고서2025.04.291. RLC 회로의 과도응답 RLC 회로의 과도응답을 분석하였습니다. 과감쇠(Over Damped) 응답, 임계감쇠(Critically Damped) 응답, 저감쇠(Under-Damped) 응답, 무손실(Lossless) 응답 등 4가지 경우에 대해 설명하였습니다. 각 경우의 특성 다항식과 과도응답 수식을 제시하였습니다. 2. RLC 회로의 정상상태응답 RLC 회로의 정상상태응답을 분석하였습니다. 회로 방정식을 페이저 관계식으로 변환하여 정상상태 응답 수식을 도출하였습니다. 3. RL 회로 시정수 측정 RL 회로를 구성하여 구형파 ...2025.04.29
-
[전기회로설계실습] 설계 실습 9. LPF와 HPF 설계2025.05.131. LPF(Low-Pass Filter) 설계 본 실험에서는 RC회로를 이용하여 LPF를 설계하고 주파수 응답을 실험으로 확인하였습니다. 커패시터 전압의 위상을 측정한 결과 lagging 현상이 확인되었고, 이론값과 비교했을 때 오차율은 -7.5%였습니다. 또한 입력과 출력의 크기와 위상차가 타원형의 리사주 패턴을 출력한다는 것을 확인하였습니다. 주파수가 증가할수록 커패시터에 걸리는 전압이 낮아지는 LPF의 특성을 관찰할 수 있었습니다. 2. HPF(High-Pass Filter) 설계 본 실험에서는 RL회로를 이용하여 HPF를 ...2025.05.13
-
전자전기컴퓨터설계1 결과보고서 3주차2025.05.041. 함수 발생기와 오실로스코프 실험의 목적은 함수 발생기와 오실로스코프를 사용할 줄 아는 것이다. 실험을 통해 커패시터, 인덕터, 다이오드를 포함한 회로의 파형이 어떻게 달라지는지 파악할 수 있었다. 2. 커패시터 커패시터는 회로에서 전기 용량을 전기적인 위치에너지로 저장하는 장치이다. 두 판의 표면과 유전체, 측 절연체가 맞닿은 부분에 전하가 저장되며, 두 개의 도체와 유전체의 표면에 모이는 전하량은 부호가 다른 같은 양의 전하이다. 이로 인해 전기적인 인력이 발생하고, 이 인력에 의해 전하들이 모이게 되어 에너지가 저장된다. ...2025.05.04
-
전기회로설계실습 실습8 예비보고서2025.01.201. RL 회로 설계 주어진 시정수를 갖는 RL 회로를 설계하고 측정하는 방법을 설계하였습니다. 시정수가 10μs인 RL 직렬회로를 설계하였고, 이를 위해 저항 값을 계산하였습니다. 또한 Function Generator의 출력을 사각파로 하여 시정수를 측정하고, 저항 전압과 인덕터 전압의 예상 파형을 그래프로 제시하였습니다. 2. RL 회로 측정 RL 회로의 Function Generator 출력(CH1)과 인덕터 전압(CH2)을 동시에 관측할 수 있도록 회로와 오실로스코프를 연결하는 방법을 제시하였습니다. 또한 Function ...2025.01.20
-
전기회로설계실습 8. 인덕터 및 RL회로의 과도응답(Transient Response)2025.01.211. RL 회로의 과도응답 RL 회로의 과도응답 특성을 이해하고 측정하는 방법을 설명합니다. 주어진 시정수를 갖는 RL 회로를 설계하고 이를 측정하는 방법을 설명합니다. 인덕터의 에너지 충전 및 방출 과정과 이에 따른 전압 및 전류 파형을 분석합니다. 2. 인덕터 특성 인덕터의 에너지 저장 및 방출 특성을 설명합니다. 인덕터에 에너지가 완전히 충전되기 전에 저항에 의해 에너지가 방출되는 경우, 에너지 방출 시간이 짧아져 파형이 왜곡되는 현상을 설명합니다. 3. 회로 설계 및 측정 주어진 시정수를 갖는 RL 회로를 설계하고 이를 측정...2025.01.21
-
RL회로의 시정수 측정회로 및 방법설계2025.05.151. RL 회로의 시정수 측정 실험을 통해 10mH 인덕터의 시정수를 측정하였다. DMM을 통해 인덕터의 저항을 26.9Ω으로 측정하였고, 1KΩ의 가변저항을 사용하여 10us의 시정수를 갖는 RL 회로를 구성하였다. 오실로스코프를 통해 측정한 결과, 시정수가 8us로 나타났는데, 이는 이론값과 약 20% 정도의 오차가 있었다. 오차의 원인으로는 가변저항과 인덕터의 오차, 측정 과정에서의 오차 등이 있었다. 2. 입력 전압의 OFFSET 및 크기 변화에 따른 영향 입력 전압의 OFFSET을 제거하고 크기를 5V로 증가시켜 실험을 반...2025.05.15
-
발전기 원리 실험 예비보고서 (보고서 점수 만점/A+)2025.04.251. 코일의 인덕턴스 측정 코일을 이용하여 RL 회로를 구성하고, 오실로스코프의 커서 기능을 통해 τ = 0.368이 되는 지점을 찾아 코일의 인덕턴스를 계산할 수 있다. 2. 자석 삽입에 따른 전압 극성 변화 자석을 코일에 넣거나 뺄 때 Lenz의 법칙에 따라 유도전류의 방향이 바뀌어 발생전압의 극성이 반대로 된다. 3. 자속 변화율 측정 코일에 자석을 넣거나 뺄 때 발생하는 자속 변화율은 Faraday의 법칙에 따라 유도기전력의 크기와 같으므로, 코일에 흐르는 전류를 측정하면 자속 변화율을 알 수 있다. 4. 자석 삽입에 따른 ...2025.04.25