총 86개
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16
-
프롬프트 엔지니어의 소개와 미래 (feat. 인공지능)2025.05.051. 생성형 AI 생성형 AI(Generative AI)는 기존 예제에서 학습하여 새로운 콘텐츠, 패턴 또는 데이터를 생성하는 데 중점을 둔 인공 지능의 한 분야입니다. 고급 모델과 기술을 사용하여 텍스트, 이미지, 음악 및 비디오와 같은 영역에서 사람과 유사한 출력을 생성합니다. 생성형 AI의 주요 특징에는 대규모 데이터 세트로부터의 학습, 확률적 모델링, 창의성, 적응성 및 고품질 출력이 포함됩니다. 2. GPT GPT는 Generative Pre-trained Transformer의 약자로 자연어 처리 작업을 위해 설계된 일종...2025.05.05
-
챗GPT 특징, 활용 가능성, 시사점 및 발전 방안2025.05.061. 챗GPT의 특징 챗GPT의 특징은 초거대 AI, 대화형 AI, 파인튜닝 및 다양한 언어 지원을 들 수 있다. 초거대 AI는 학습을 통해 도출된 값이 많을수록 성능이 좋아지며 타사 AI 모델보다 열 배 이상 많은 학습 값이 사용된다. 대화형 AI는 수억 건의 대화 데이터 학습을 통해 자연어 처리 및 언어 생성 기술을 활용하여 인간과 같은 대화를 나눌 수 있다. 파인튜닝은 미리 대량의 데이터로 학습된 GPT가 특정한 작업을 수행할 수 있도록 조정하여 원하는 대화 형식과 주제를 더 잘 이해하고 응답할 수 있다. 다양한 언어 지원은 ...2025.05.06
-
ChatGPT 설명 및 이용 가이드2025.05.071. ChatGPT ChatGPT는 최근 인공지능 분야에서 주목받는 대화 모델의 일종입니다. 이 모델은 OpenAI에서 개발한 GPT(Generative Pre-trained Transformer) 모델의 일부로, 자연어 처리 기술과 딥러닝 알고리즘을 활용하여 인간과 대화하는 역할을 수행합니다. ChatGPT는 챗봇, 인공지능 비서, 상담원 등 다양한 분야에서 활용됩니다. 2. Transformer ChatGPT(Generative Pre-trained Transformer)은 딥러닝 기술 중 하나인 Transformer 구조를 기...2025.05.07
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10
-
[AI 인공지능] Chat GPT로 시작된 생성형AI의 현황, 가능성, 한계, 미래전망2025.05.101. 생성형 AI 현황 ChatGPT와 같은 생성 인공 지능(AI) 모델은 최근 몇 년 동안 상당한 발전을 이루었으며 다양한 응용 프로그램에 대한 큰 잠재력을 가지고 있습니다. 딥 러닝 기술로 구동되는 ChatGPT와 같은 생성 AI 모델은 사람과 같은 텍스트 응답을 생성하는 데 놀라운 발전을 보여주었습니다. 그들은 방대한 양의 데이터에 대해 교육을 받아 일관성 있고 문맥적으로 관련된 텍스트를 이해하고 생성할 수 있습니다. 2. 생성형 AI 잠재력 제너레이티브 AI 모델은 잠재적인 응용 분야가 광범위합니다. 고객 서비스, 가상 비서...2025.05.10
-
트랜스포머 알고리즘의 개요와 적용 사례2025.01.171. 트랜스포머 알고리즘 트랜스포머 알고리즘은 2017년 구글의 연구팀이 발표한 딥러닝 모델로, 자연어 처리(NLP) 분야에서 혁신적인 변화를 가져왔습니다. 이 알고리즘은 인코더-디코더 구조와 어텐션 메커니즘을 기반으로 하며, 병렬 처리와 확장성을 통해 대규모 데이터를 효율적으로 처리할 수 있습니다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 알고리즘은 인코더와 디코더로 구성됩니다. 인코더는 입력 데이터를 고차원 벡터로 변환하고, 디코더는 이 벡터를 다시 출력 데이터로 변환합니다. 핵심은 어텐션 메커니즘으로, 입력 데이터의 각 요소...2025.01.17
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.261. LLM(대규모 언어 모형) LLM은 주로 텍스트 데이터를 기반으로 학습된 모델로, 자연어 이해(NLU)와 자연어 생성(NLG)에 강점을 지닌다. 대표적인 예로는 OpenAI의 GPT 시리즈가 있으며, 이들은 방대한 양의 텍스트 데이터를 학습하여 인간과 유사한 수준의 텍스트 생성 능력을 보유하고 있다. LLM은 주로 챗봇, 자동 번역, 텍스트 요약, 감정 분석 등 다양한 언어 처리 작업에 활용된다. 2. LMM(대규모 멀티모달 모형) LMM은 텍스트뿐만 아니라 이미지, 음성, 비디오 등 다양한 형태의 데이터를 동시에 처리할 수 ...2025.01.26
-
GPT 매개변수 숫자가 갖는 의미 (GPT parameters)2025.05.081. 대규모 언어 모델(LLM) 대규모 언어 모델(Large Language Model, LLM)은 자연어 처리 및 인공 지능 분야에서 중요한 역할을 하는 기술입니다. LLM은 많은 양의 텍스트 데이터를 학습하여 언어 이해, 생성, 번역 등의 다양한 작업을 수행할 수 있는 능력을 갖추고 있습니다. 이 모델은 주로 딥 러닝 알고리즘과 큰 규모의 컴퓨팅 자원을 사용하여 학습됩니다. 2. GPT 모델 GPT-2, GPT-3, GPT-4는 모두 OpenAI에서 개발한 대규모 언어 모델(LLM)입니다. GPT는 Generative Pre-t...2025.05.08
-
챗 GPT가 만들 미래 세상2025.05.091. ChatGPT의 등장 ChatGPT는 OpenAI가 개발한 대화형 인공지능으로, 자연어 처리(NLP) 기술을 통해 사람과 자연스럽게 소통할 수 있습니다. 이를 통해 사용자는 다양한 주제에 대한 질문을 하거나 특정 작업을 수행하도록 요청할 수 있습니다. 2. ChatGPT의 활용 분야 ChatGPT는 고객 서비스, 교육, 엔터테인먼트 등 다양한 분야에서 활용될 수 있습니다. 고객 서비스에서는 고객의 질문에 답하거나 문제를 해결하는 데 사용될 수 있고, 교육 분야에서는 학생들의 질문에 대답하거나 새로운 주제를 설명하는 데 사용될 ...2025.05.09
