총 86개
-
생성적 적대 신경망 (GAN)2025.05.091. 생성적 적대 신경망 (GAN) 생성적 적대 신경망(Generative Adversarial Network)은 2014년에 이안 굿펠로우와 그의 팀에 의해 처음 소개되었습니다. 이 모델은 딥러닝 분야에서 혁신적인 기술로 인정받고 있으며, 이미지 생성, 음성 합성, 자연어 처리 등 다양한 분야에서 활발하게 적용되고 있습니다. GAN은 기본적으로 생성자와 판별자라는 두 개의 신경망으로 구성되며, 서로 경쟁하며 성능을 향상시키는 특징을 갖고 있습니다. 생성자는 실제와 유사한 데이터를 생성하기 위해 노력하고, 판별자는 생성자가 생성한 ...2025.05.09
-
ChatGPT의 진화 3.5-turbo, 4.0, 4o의 비교와 혁신2025.01.151. ChatGPT 3.5-turbo ChatGPT 3.5-turbo는 2023년에 출시된 모델로, GPT-3 아키텍처를 기반으로 하며 속도와 효율성이 크게 향상되었습니다. 이 모델은 빠르고 효율적인 성능을 제공하며, 기본적인 텍스트 생성, 번역, 요약 등의 기능을 수행합니다. 2. ChatGPT 4.0 ChatGPT 4.0은 2024년에 출시된 모델로, GPT-4 아키텍처를 기반으로 합니다. 이 모델은 더 높은 성능과 향상된 언어 이해 및 생성 능력을 제공합니다. 특히 문맥을 더 잘 이해하고 자연스러운 대화를 생성할 수 있습니다....2025.01.15
-
자연어처리 대표논문 읽기 과제2025.01.121. 신경 기계 번역 신경 기계 번역은 최근에 제안된 기계 번역 접근법으로, 기존의 통계 기계 번역과 달리 단일 신경망을 구축하여 번역 성능을 극대화하는 것을 목표로 합니다. 본 논문에서는 기존 신경 기계 번역 모델의 한계를 극복하기 위해 RNN 검색 모델을 제안하였고, 이를 통해 소스 문장의 관련 단어나 주석과 대상 단어를 올바르게 정렬할 수 있게 되었습니다. 실험 결과 제안된 모델이 기존 인코더-디코더 모델을 크게 능가하고 문장 길이에 더 견고한 것으로 나타났습니다. 2. 기계 번역 기계 번역은 소스 문장 x의 조건부 확률 p(...2025.01.12
-
Chat GPT의 장단점2025.01.041. Chat GPT의 정의와 특징 Chat GPT는 Generative Pretrained Transformer의 약자로, 인공지능 분야에서 사용되는 언어 모델 중 하나입니다. 이 모델은 OpenAI에서 개발한 것으로, 대규모의 데이터셋으로 사전학습된 후 다양한 자연어 처리 태스크에 사용될 수 있습니다. 2. Chat GPT의 장점 Chat GPT의 장점으로는 다양한 자연어 처리 태스크에 적용 가능, 대용량 모델, 맞춤형 모델 학습 가능, 유연한 문장 생성 기능, 다양한 데이터셋 사용 가능, 지속적인 업데이트와 발전 등이 있습니다...2025.01.04
-
[R & E 활동 대회] 다중 연결 리스트(Multi-Linked List)를 이용한 자연어 처리 방법론 연구2025.05.121. 다중 연결 리스트(Multi-Linked List) 다중 연결 리스트(Multi-Linked List)는 단일 연결 리스트와 비슷한 구조이나 동적 할당(Dynamic allocation)과 노드 구조체를 이용하여 각 노드 간 연결이 다중으로 이루어지도록 한 자료 구조입니다. 여러 종류의 단어가 한 특성을 공유하여 다음 문장으로 연결되어야 하는 처리 구조를 이루어야 하므로 본 연구에서 이용한 자료 구조입니다. 2. 자연어 처리 본 연구에서는 신문 기사를 활용한 빅 데이터를 C언어로 구조화하여 단어 간의 상관관계를 파악하여 새로운...2025.05.12
-
정보처리 정리2025.01.091. 자연어 처리 자연어 처리는 컴퓨터가 자연언어 이해와 출력을 가능하도록 연구하는 분야입니다. 처리 과정은 단어에 반응하고 분석과 의미파악과정을 거치고, 문법적, 논리적 구조를 파악한 후 맥락을 이해하여 의도를 파악하고 적용하고 추론하여 발화계획을 세우고 문법적 논리적 구조로 실현하여 단어로 반응하는 것입니다. 응용 분야로는 기계번역, 자동통역, 사람과 기계가 소통하는 분야, 텍스트 이해로 질의응답 시스템, 텍스트 요약, 웹 문서 검색 등이 있습니다. 2. 정규표현식 정규표현식이란 문자의 형식을 지정하는 언어입니다. 문자열을 조작...2025.01.09
-
Perplexity AI란?2025.05.081. Perplexity AI Perplexity AI는 대규모 언어 모델을 사용하여 사용자 질문에 정확한 답변을 제공하는 AI 기반 검색 엔진입니다. Perplexity AI는 기계 학습과 자연어 처리(NLP)를 사용하는 챗봇으로, 사용자 질문에 응답합니다. Perplexity AI는 다양한 질문에 대한 자세한 답변을 제공하며 계정 가입이 필요 없고 이동 중에도 원활한 액세스를 제공하는 전용 모바일 앱이 있습니다. Perplexity AI의 컨텍스트 이해 능력은 다른 AI 앱과 차별화되며 대화의 컨텍스트를 기반으로 개인화된 답변을...2025.05.08
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16
-
산업혁명과 비즈니스 ) 인공지능(AI) 기반 우울증 치료 로봇2025.01.211. 인공지능(AI) 기반 우울증 치료 로봇 본 보고서에서 제안하는 아이디어는 '인공지능(AI) 기반 우울증 치료 로봇'입니다. 이는 최첨단 AI 기술인 자연어 처리(NLP), 컴퓨터 비전을 통한 감정 인식, 기계 학습 알고리즘 등 4차 산업혁명 기술을 총체적으로 활용하여 우울증 환자의 심리 치료를 혁신적으로 지원하고 정신 건강 관리를 새로운 차원으로 끌어올리는 시스템입니다. 이 로봇은 환자의 얼굴 표정, 음성 톤, 제스처 등 비언어적 신호를 포착하여 정확한 감정 상태를 인식하고, 대화 내용을 NLP로 분석하여 언어적 감정 표현을 ...2025.01.21
-
트랜스포머 알고리즘의 개념과 적용 사례2025.01.251. 트랜스포머 알고리즘의 개념 트랜스포머 알고리즘은 주의 메커니즘을 기반으로 하는 딥러닝 모델로, 입력 데이터의 각 요소가 다른 모든 요소와의 관계를 고려하여 변환된다. 이를 통해 순차적인 처리 대신 병렬 처리가 가능하게 되어 학습 속도가 크게 향상되었다. 트랜스포머는 인코더와 디코더로 구성되어 있으며, 각 단계에서 다중 헤드 자기 주의 메커니즘을 사용한다. 이 알고리즘은 2017년 구글의 연구팀이 발표한 논문에서 처음 소개되었다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 모델은 인코더와 디코더 블록으로 구성되어 있다. 인코더는...2025.01.25
