
총 110개
-
DQN과 A2C network를 활용한 CartPole 강화학습 훈련과정 및 code2025.01.131. CartPole environment OpenAI gym의 CartPole은 카트 위에 막대기가 고정되어 있고 막대기는 중력에 의해 바닥을 향해 자연적으로 기울게 되는 환경을 제공한다. CartPole의 목적은 카트를 좌, 우로 움직이며 막대기가 기울지 않고 서 있을 수 있도록 유지시켜 주는 것이 목적인데, 강화 학습 알고리즘을 이용하여 막대기를 세울 수 있는 방법을 소프트웨어 에이전트가 스스로 학습할 수 있도록 한다. 2. DQN algorithm Deep Q-Network는 state-action value Q값을 Deep...2025.01.13
-
4차 산업혁명과 알고리즘(수학)2025.01.171. 4차 산업혁명 최근 인공지능 분야에 놀라운 성과가 나타나면서 인공지능은 미래의 일이 아니라 현실이 되고 있다. 그것은 빅데이터의 출현과 기계 스스로가 학습할 수 있는 '딥러닝(deep learning)'이라는 알고리즘의 개발 덕분이다. 알고리즘은 제 4차 산업혁명의 기초 작업으로 작용하고 있으며, 알고리즘을 안다는 것은 제 4차 산업혁명에 관한 이해도를 높이는 데 도움이 될 것이다. 2. 알고리즘 알고리즘이란 컴퓨터에서 쓰이는 용어로 어떤 문제의 해결을 위하여, 입력된 자료를 토대로 하여 원하는 출력을 유도하여 내는 규칙의 집...2025.01.17
-
인공지능 '챗봇' 중등 교과교육 활용방안 탐색2025.01.181. 외국어 교육에서의 챗봇(Chat Bot) 활용 사례 챗봇은 문자나 음성으로 대화가 가능한 컴퓨터 프로그램으로, 다양한 문제를 해결할 수 있도록 도와주는 대화형 사용자 인터페이스이다. 외국어 교육에서는 언어학습이라는 목표를 가지고 있으며, 학습자들이 원어민처럼 옆에 두고 수시로 도움받는 것을 요구한다. 국내에서 개발된 'Genie Tutor'는 한국전자통신연구원이 개발한 인공지능형 영어 학습 프로그램으로, 학습자의 음성데이터를 받아들여 적절한 반응을 처리하여 학습자 간 영어 대화가 가능하다. 2. 중국어 교육용 챗봇(Chat B...2025.01.18
-
미래사회와 소프트웨어 과제 012025.01.291. GPU(Graphic Processing Unit) GPU는 컴퓨터에 들어있는 부품 중 하나로, 주로 그래픽 렌더링 작업을 수행하는 데 사용되지만 최근에는 과학 계산, 인공지능, 데이터 분석 등 다양한 용도로 활용되고 있다. GPU는 CPU와 달리 많은 연산을 병렬적으로 처리할 수 있는 강점이 있어 그래픽 및 영상처리, 인공지능, 머신러닝, 데이터 분석, 과학적 시뮬레이션 등의 작업에 유용하게 사용된다. 또한 GPU는 암호화폐 채굴 과정에서 중요한 역할을 하며, 머신러닝과 딥러닝에도 활용된다. 2. CPU와 GPU의 차이 CP...2025.01.29
-
딥러닝(Deep Learning) 기술의 활용 방안2025.05.101. 인공지능, 기계학습(Machine Learning), 딥러닝(Deep Learning)의 관계 인공지능의 영역 안에는 기계학습이 있고, 딥러닝은 기계학습의 한 분야이다. 최근 인공지능의 여러 기술 중에서도 기계학습의 딥러닝이 아주 놀랄만한 성과를 보여주고 있다. 2. 딥러닝 기술을 의료에 활용한 사례 또는 활용 방안 의료산업에서 딥러닝 기술이 적용되면서 매우 빠른 속도로 높은 정확도의 진단이 가능해지고 있다. 이를 활용하면 진단의 정확도는 높이면서도 투입되는 시간과 비용은 현저히 줄일 수 있다. 또한 개인에 최적화된 맞춤형케어...2025.05.10
-
AI 기반 컴퓨터 비전 기술을 활용한 의료 서비스 평준화2025.01.021. AI 기반 컴퓨터 비전 기술의 의료 적용 고령화 사회에서 건강과 의료에 대한 관심이 높아지고 있지만, 실질적으로 양질의 의료 서비스를 받기 위해서는 특정 병원에 대한 의존도가 높아지고 있습니다. 이에 컴퓨터 비전 기술을 활용하여 지역과 관계없이 동일한 진료 기준으로 질환을 판정할 수 있는 시스템을 구축하여 모두가 평등한 의료 서비스를 받을 수 있는 환경을 만드는 것이 필요합니다. 1. AI 기반 컴퓨터 비전 기술의 의료 적용 AI 기반 컴퓨터 비전 기술은 의료 분야에서 매우 유망한 기술로 주목받고 있습니다. 이 기술은 의료 영...2025.01.02
-
딥러닝을 이용한 이미지 세그멘테이션과 디노이징2025.05.051. 이미지 세그멘테이션 이미지 세그멘테이션은 이미지를 픽셀 단위로 끊어 분류하는 문제입니다. 신경망을 학습시켜 각 픽셀이 어떤 범주에 해당하는지 예측하도록 합니다. 2. 이미지 디노이징 이미지 디노이징은 이미지에 섞인 노이즈를 걸러 흐린 이미지를 선명하게 하는 문제입니다. 3. U-Net U-Net은 이미지 세그멘테이션과 디노이징을 위한 대표적인 딥러닝 모델입니다. 인코더-디코더 구조를 가지며, 인코더에서 추출한 특징을 디코더에서 참조할 수 있어 정보 복원에 도움이 됩니다. 하지만 설계 자유도가 낮고 메모리가 많이 필요한 단점이 ...2025.05.05
-
트랜스포머 알고리즘의 개념과 적용 사례2025.01.251. 트랜스포머 알고리즘의 개념 트랜스포머 알고리즘은 주의 메커니즘을 기반으로 하는 딥러닝 모델로, 입력 데이터의 각 요소가 다른 모든 요소와의 관계를 고려하여 변환된다. 이를 통해 순차적인 처리 대신 병렬 처리가 가능하게 되어 학습 속도가 크게 향상되었다. 트랜스포머는 인코더와 디코더로 구성되어 있으며, 각 단계에서 다중 헤드 자기 주의 메커니즘을 사용한다. 이 알고리즘은 2017년 구글의 연구팀이 발표한 논문에서 처음 소개되었다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 모델은 인코더와 디코더 블록으로 구성되어 있다. 인코더는...2025.01.25
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
챗GPT의 개념과 특징, 활용사례 및 효과, 교육적 활용 가치 및 앞으로의 전망2025.01.141. 챗GPT 챗GPT는 GPI 언어 모델을 기반으로 하는 AI 기반 챗봇으로, 딥러닝 기술을 사용하여 대화하는 형태로 인간과 유사한 응답을 생성합니다. 방대한 양의 데이터를 통해 훈련된 챗GPT는 사용자들에게 매우 인상적인 기능을 제공하고 있으며, 기존에 컴퓨터가 할 수 없다고 생각했던 일들을 해내고 있습니다. 2. AI 기반 챗봇 챗GPT는 AI 기반 챗봇으로, 딥러닝 기술을 사용하여 대화하는 형태로 인간과 유사한 응답을 생성합니다. 이러한 AI 기반 챗봇 기술은 사용자들에게 매우 인상적인 기능을 제공하고 있으며, 기존에 컴퓨터...2025.01.14