
총 25개
-
비즈니스 애널리틱스와 관련 기술의 정의 및 역사2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 기업의 의사 결정을 지원하기 위해 데이터를 분석하여 통찰력을 도출하고 이를 기반으로 전략을 수립하는 과정입니다. 비즈니스 애널리틱스는 20세기 중반 컴퓨터 기술의 발전과 함께 시작되었으며, 통계 기법, 데이터 마이닝, 예측 모델링, 인공지능 등을 활용하여 비즈니스 성과를 개선하는 것을 목표로 합니다. 2. 데이터 과학 데이터 과학은 다양한 형태의 데이터를 분석하고 의미 있는 정보를 추출하는 학문적 분야입니다. 통계학, 수학, 컴퓨터 과학 등을 기반으로 하며, 데이터 처리, 분석, 예측 ...2025.01.26
-
빅데이터의 정의, 등장 배경 및 활용 사례2025.01.181. 빅데이터의 정의 빅데이터는 일반적인 데이터 관리 도구로 처리하기 어려운 대규모의 데이터 세트를 의미한다. 빅데이터의 특징은 흔히 '3V'로 설명되는데, 이는 Volume(규모), Velocity(속도), Variety(다양성)를 말한다. 최근에는 Veracity(정확성)와 Value(가치)가 추가되어 '5V'로 확장되기도 한다. 2. 빅데이터의 등장 배경 빅데이터의 등장 배경은 기술 발전, 소셜 미디어와 모바일 기기의 보급, 사물인터넷(IoT) 기술의 발전 등이다. 컴퓨터 기술과 인터넷의 발전으로 대량의 데이터를 생성하고 저장...2025.01.18
-
미래사회와 소프트웨어 과제2025.01.291. 데이터 분석의 역사 데이터는 인류 역사 속에서 오래전부터 분석되어 왔다. 이집트의 토지조사, 바빌로니아의 진흙판 숫자, 중국의 인구조사, 그리스의 조세조사, 민수기의 인구조사, 로마의 생명표 등 다양한 데이터 분석 사례가 있었다. 우리나라에서도 조선시대에 호적 제도를 통해 인구통계를 내었다. 이처럼 통계학은 과거부터 국가 통치를 위해 사용되어 왔다. 2. 데이터의 진화 산업혁명 이후 데이터는 국가 데이터에서 민간 데이터로 진화했다. 데이터 저장 기술의 발전으로 소셜 네트워크 서비스 데이터가 등장했고, 데이터베이스 시대가 열렸다...2025.01.29
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25
-
빅데이터의 의미와 정보기술2025.04.251. 빅데이터의 의미 빅데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 빅데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅데이터 분석 기술 빅데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술들을 통해 빅데이...2025.04.25