
총 11개
-
나노결정 태양전지의 제작 결과2025.05.091. 나노결정 태양전지 실험을 통해 제작한 나노결정 태양전지의 특성을 분석하였다. 색소를 사용한 태양전지와 실리콘 태양전지의 개로전압, 단락전류, 전류밀도, 파워밀도 등을 측정하고 효율을 계산하였다. 나노결정 태양전지의 구성 요소인 SnO2 전도성 유리판, TiO2 나노결정, 색소, 요오드 전해질, 탄소막 등의 역할을 설명하였다. 나노결정 TiO2와 색소의 적합한 특성에 대해 논의하였다. 태양전지의 효율 향상을 위한 방안을 제시하였다. 1. 나노결정 태양전지 나노결정 태양전지는 기존 실리콘 태양전지에 비해 높은 효율과 낮은 제조 비...2025.05.09
-
나노결정 태양전지의 제작 예비2025.05.091. 반도체 태양전지 반도체 태양전지는 태양열(가시광선)의 흡수, 즉 에너지에 의해 p형 반도체에서는 정공이 발생하고, n형 반도체에서는 전자가 발생하는 반응을 이용한다. p-n 접합에 의해 발생한 정공과 전자는 반도체를 통해서 서로 이동하며 전류를 운반할 수 있게 된다. 반도체 태양전지의 경우 사용되는 재료에 따라 반도체 단결정(single crystalline) 태양전지와 반도체 다결정(polycrystalline) 태양전지로 구분할 수 있다. 단결정 태양전지는 고체의 실리콘이 모두 균일한 방향으로 배열되어 있어 20% 이상의 ...2025.05.09
-
염료감응형 태양전지(DSSC) 실험 예비레포트2025.05.031. 염료감응형 태양전지(DSSC) 염료감응형 태양전지(DSSC)는 광민성 염료를 사용하여 빛을 포착하여 전기로 변환하는 태양광 전지의 한 종류입니다. DSSC는 기존 실리콘 태양전지와 달리 염료감응형 나노결정 티타늄 디옥사이드 전극을 사용해 햇빛을 흡수해 전기로 변환합니다. DSSC는 저렴하고 제조가 용이하며 조명이 낮은 조건에서도 효과적으로 작동할 수 있는 등 여러 장점이 있지만, 효율 및 안정성 향상을 위한 노력이 필요합니다. 2. DSSC의 원리와 과정 DSSC의 원리와 과정은 크게 7단계로 나눌 수 있습니다. 1) 태양으로...2025.05.03
-
전도 유망한 광촉매 TiO2란 무엇인가2025.01.091. 광촉매 광촉매는 반응에 직접 참여하지만, 반응 후에 소모되지 않고 오직 반응 메커니즘의 경로를 변경하고 반응 속도를 가속화합니다. TiO2의 광촉매 효율을 향상시키고 기본 과정을 이해하기 위한 연구 노력은 종종 에너지 재생 및 에너지 저장과 관련이 있으며, 최근 몇 년 동안 환경 정화에의 응용은 비균질 광촉매 분야에서 가장 활발한 분야 중 하나가 되었습니다. 2. TiO2의 구조 TiO2의 광촉매 활성은 결정성, 불순물, 표면적, 표면 수산기 그룹의 밀도 등 다양한 요소에 따라 달라집니다. 그러나 가장 중요한 요소는 그것의 결...2025.01.09
-
숭실대 신소재공학실험1) 12주차 전기방사 및 전도성 물질 코팅 결과보고서2025.01.131. 전기방사 전기 방사의 원리를 이해하고 변수에 대해 알아보았다. 전기방사를 통해 고분자 용액을 방사시킬 수 있으며, 용액의 농도, 용매 비율, 전극 간 거리 및 전압, 전기방사 시간 등의 공정변수가 섬유의 크기와 모양에 영향을 준다. 2. 전도성 물질 전도성 물질에 대해 알아보았다. 전도성 물질인 Carbon black을 PAN 용액에 섞어 전기방사된 PVDF 필름 위에 닥터블레이드 코팅하는 실험을 진행하였다. 3. PVDF 섬유 특성 PVDF 고분자 용액의 농도가 증가함에 따라 전기방사 되는 섬유의 지름이 증가하였다. 이는 용...2025.01.13
-
염료를 이용한 화학적 에너지 소자 제작 실험(DSSC)2025.01.121. 염료감응 태양전지 염료감응 태양전지는 염료를 이용하여 태양광 에너지를 전기 에너지로 변환하는 기술이다. 이 실험에서는 블루베리 추출액을 염료로 사용하여 염료감응 태양전지를 제작하고 그 성능을 평가하였다. 실험에서는 TiO2 페이스트 제조, 전극 제작, 염료 추출 및 전지 조립 등의 과정을 거쳤으며, 최종적으로 전압과 전류를 측정하여 전지의 성능을 확인하였다. 2. TiO2 페이스트 TiO2 분말을 묽은 아세트산과 혼합하여 페이스트를 제조하였다. TiO2는 광촉매 역할을 하는 핵심 소재로, 페이스트 제조 시 농도와 점도 등의 특...2025.01.12
-
물리화학실험 TiO2 광촉매에 의한 분자의 분해2025.01.131. 광촉매 반응 광촉매(산화물반도체)에 빛을 비추었을 때 일어나는 것으로, 광촉매가 빛을 흡수하여 활성화에너지를 낮추어줌으로서 반응 속도를 증가시켜주는 반응이다. 촉매란 화학반응에서 자신은 변화하지 않고 반응속도를 변화시키거나 반응을 시작시키는 등의 역할을 하는 물질이다. 광촉매란 촉매의 일종으로 촉매작용이 빛에너지를 받아 일어나는 물질, 즉, 빛을 에너지원으로 촉매반응(산화, 환원반응)을 촉진시키는 작용이나 반응을 의미한다. 이 광촉매반응을 통하여 형성된 반응성물질(예, 이산화티탄늄(TiO2)에 빛을 조사면 결정표면에 생기는 전...2025.01.13
-
BET 원리와 이해2025.01.121. BET 이론 BET 이론은 1938년 Brunauer, Emmett, Teller에 의해 개발된 방법으로, 미세하게 분산된 다공성 고체의 비표면적을 측정하는 데 사용됩니다. 이 이론은 물리 흡착에 적용되며, 흡착된 분자가 다음 흡착될 분자의 흡착점이 될 수 있다는 가정을 기반으로 합니다. BET 이론은 단분자층 흡착량을 쉽게 결정할 수 있으며, 흡착열과 관련된 상수 C를 제공합니다. 이를 통해 고체 표면의 비표면적을 계산할 수 있습니다. 2. 흡착 등온선 흡착 등온선은 일정 온도에서 기체 압력에 대한 흡착량을 나타냅니다. 흡착...2025.01.12
-
X선 회절법을 이용한 강유전체 BaTiO3의 구조 분석과 시차 주사 열량계를 이용한 상전이 온도 측정 (예비)2025.05.121. 강유전체 BaTiO3 BaTiO3는 대표적인 강유전체로, 온도에 따라 결정 구조가 변화한다. 상온에서는 tetragonal 구조이며, 120°C 이상에서는 cubic 구조로 변화한다. 이러한 상전이 과정에서 열 출입 현상이 발생하므로 DSC 분석을 통해 상전이 온도를 측정할 수 있다. 2. X선 회절법(XRD) X선 회절법은 물질의 결정 구조를 분석할 수 있는 기술이다. 시료에 X선을 조사하면 결정면에서 회절이 일어나고, 이를 통해 결정 구조, 격자 상수, 상 변화 등을 확인할 수 있다. BaTiO3의 경우 온도에 따른 결정 ...2025.05.12
-
숭실대학교 신소재공학실험2 산화물 형광체 분말 합성 예비보고서2025.01.211. 고상법(Solid state reaction) 고체상 반응법이라고도 불리는 고상법은 고체입자의 확산을 통해 입자를 제조하는 방법이다. 산화물 상태에서의 고체 상태의 입자들을 섞은 후 고온에서의 열처리와 밀링 공정을 거쳐 화합물을 생성할 수 있다. 고상법을 이용한 대표적인 반응은 BaTiO3 분말 제조이다. 2. BaTiO3 분말 제조 BaCO3와 TiO2를 혼합하고 고온에서 고상 확산 반응을 시켜 BaTiO3 분말을 제조할 수 있다. 이 반응은 3단계로 구분되는데, 먼저 BaCO3와 TiO2가 반응하여 BaTiO3가 형성되고,...2025.01.21