총 17개
-
개성적이고 창의적인 수학 세부능력 및 특기사항 예문입니다. 유용하게 사용하시길 바랍니다.2025.05.111. 수학 교과 세특 기재 예시 수학 교과서 3단원 2-03점과 직선 사이의 거리, 3-01원의 방정식 및 과학 교과서 2-1 역학적 시스템의 정보 관련 단원을 융합하여 탐구함. 건축물에서의 도형을 탐구하며 트러스트 교 건축물에서 삼각형이 쓰인 이유에 대해서 궁금증을 가짐. 건축에서 삼각형에 장점과 쓰이는 이유에 관하여 관심을 가짐. 모둠원끼리 각자 다양한 트러스 구조를 조사하여 각각 다른 트러스 구조에 대한 장단점과 트러스 구조가 어디에 자주 쓰이고 삼각형이 왜 쓰이는지에 대해서 서로 의견을 주고받음. 또한 한옥 지붕에서 사이클론...2025.05.11
-
방통대 방송대 이산수학 출석수업시험대비 5페이지 암기노트 핵심요약정리 (1~2장)2025.01.251. 명제 명제는 참과 거짓을 구별할 수 있는 문장 또는 수학적 식을 말합니다. 명제의 종류에는 합성명제, 조건명제, 쌍조건명제, 항진명제, 모순명제 등이 있습니다. 합성명제는 하나 이상의 명제와 논리연산자, 괄호로 이루어진 명제입니다. 조건명제는 p가 조건, q가 결론인 명제이며, 쌍조건명제는 p와 q가 서로 조건과 결론인 명제입니다. 항진명제는 항상 참인 명제이고, 모순명제는 항상 거짓인 명제입니다. 2. 논리연산자 명제를 대상으로 하는 논리연산에는 논리합(or, V), 논리곱(and, ^), 부정(not, ~), 배타적 논리합...2025.01.25
-
수학적 귀납법의 정의, 역사, 유효성 및 증명2025.11.171. 수학적 귀납법의 정의 및 구조 수학적 귀납법은 주어진 명제 P(n)이 모든 자연수에 대하여 성립함을 보이기 위해 사용되는 증명법입니다. 기본단계와 귀납 단계로 나뉘어 증명되며, 기본단계에서는 자연수의 첫 번째 값인 1에 대해 참임을 증명하고, 귀납 단계에서는 임의의 값 k에 대해 P(k) => P(k+1)임을 증명함으로써 모든 자연수에 대한 명제의 성립을 증명합니다. 2. 수학적 귀납법의 역사적 발전 수학적 귀납법의 역사는 기원전 300년경 고대 그리스 수학자 Euclid에 의해 처음 기록되었으며, 소수의 무한성 증명에 사용되...2025.11.17
-
인공지능 ) 1. 퍼지 논리는 무엇인지 명확한 정의를 쓰시오. 2. 고전적인 논리 역설 아래를 구분하시오. 1) 피타고라스 학파 2) 러셀의 역설2025.01.241. 퍼지 논리 퍼지 논리는 모호한 대상에 대해 다루는 논리로, 소속이 불확실하거나 불분명한 원소들을 하나의 양으로 표현하는 퍼지 집합의 이론을 바탕으로 발전된 응용 기술이다. 퍼지 논리는 경계가 불분명한 척도를 나타내는 상황에서 소속함수를 활용해 수학적으로 접근해 문제를 해결하기 위한 것이다. 퍼지 제어기는 퍼지화기, 퍼지규칙, 퍼지추론기, 비퍼지화기로 구성되며, 퍼지화기는 시스템 입력을 소속함수로 변환하고, 퍼지추론기는 퍼지규칙을 바탕으로 퍼지연산을 수행하며, 비퍼지화기는 퍼지추론 결과를 정량적인 제어량으로 변환한다. 2. 고전...2025.01.24
-
수학적 귀납법에 대하여 설명하고 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명하라2025.01.181. 수학적 귀납법 수학적 귀납법은 주어진 모든 자연수가 특정 성질을 만족한다는 명제를 증명하는 방법 중 하나입니다. 이 방법은 가장 작은 자연수(상황에 따라 0이거나 1일 수 있다)가 해당 성질을 만족함을 먼저 증명하고, 어떤 자연수가 그 성질을 만족한다고 가정했을 때, 그 다음 자연수 또한 같은 성질을 만족함을 보임으로써 모든 자연수에 대해 그 성질이 성립함을 증명합니다. 수학적 귀납법은 일반적인 귀납적 논증이 아니라 연역적 논증에 속하며, 페아노의 공리계에서 유래한 공리로 간주됩니다. 또한 이 귀납법은 임의의 정초 관계를 가진...2025.01.18
-
광운대학교 전기공학실험 실험3. 부울대수와 논리조합 예비레포트2024.12.311. 부울대수 부울대수는 논리변수의 입력과 논리변수 출력간의 함수관계를 수식의 형태로 표현하는 수학체계입니다. 부울대수 체계 안에서 모든 논리변수는 0, 1의 두 상태 중 하나를 갖습니다. 부울대수의 기본 연산에는 OR, AND, NOT 연산이 있으며, 이에 따른 교환법칙, 결합법칙, 분배법칙, 흡수법칙 등의 정리가 성립합니다. 드모르강의 정리를 통해 OR과 AND, NOT 게이트 간의 관계를 이해할 수 있습니다. 2. 논리조합 모든 논리적 함수관계는 AND, OR, NOT 세 가지의 기본 동작 조합으로 표현할 수 있습니다. 이를 ...2024.12.31
-
이산수학_수학적 귀납법에 대하여 설명하고 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명하여라.2025.01.231. 수학적 귀납법의 정의 수학적 귀납법은 이산수학에서 매우 중요한 증명 방법 중 하나로, 주어진 명제가 모든 자연수에 대해 참임을 보이기 위해 사용된다. 이 방법은 기초적인 자연수 이론을 다루는 데 필수적이며, 특히 수열, 행렬, 집합 등의 개념을 증명하는 데 자주 활용된다. 수학적 귀납법의 기본 원리는 기초 단계에서 n=1일 때 명제가 참임을 보이고, 귀납 단계에서 임의의 자연수 k에 대해 명제가 참이라고 가정한 후 k+1에 대해서도 명제가 참임을 증명하는 것이다. 2. 수학적 귀납법의 역사적 배경과 유효성 수학적 귀납법은 고대...2025.01.23
-
언어의 이해 A+과제2025.04.261. 명사의 경계 활성화와 비활성화 명사의 경계 활성화에서 경계의 비활성화 예로 hospital과 cucumber를 제시하였다. hospital은 물체 명사이지만 '병원에 있는 동안'이라는 의미로 해석되어 경계가 비활성화된다. cucumber는 원형적인 물체 명사이지만 핫도그에 다져진 상태에서는 경계가 불분명해져 비활성화된다. 명사의 경계 비활성화에서 경계의 활성화 예로 paper와 success를 제시하였다. paper는 원형적인 물질명사이지만 '신문'이라는 의미로 해석되면서 경계가 활성화된다. success는 추상명사이지만 '성...2025.04.26
-
이론의 접근방법, 정의, 구성요소 및 법칙2025.01.031. 이론의 접근방법 이론은 현상에 대한 설명과 예측을 목적으로 변수 간의 관계를 밝힘으로써 그 현상에 대한 체계적인 견해를 제공하는 일련의 상호 연결된 개념 및 정의 혹은 명제입니다. 이론적 연관성을 도출하는 방법에는 연역적 방법과 귀납적 방법이 있습니다. 연역법은 기존 이론을 바탕으로 구체적인 관찰을 통해 이론을 검토하는 방식이며, 귀납법은 특수한 현상을 관찰하여 유의미한 규칙성을 찾아 이론을 만드는 방식입니다. 2. 이론의 정의와 구성요소 이론은 주어진 현상에 대한 개념화, 사고 과정, 논리적 연역체계로 구성된 명제들의 집합입...2025.01.03
-
간호이론의 이해2025.01.121. 간호이론의 정의 이론이란 어떤 현상을 기술하고 설명하며 예측하고 통제 또는 처방하려는 목적을 가진 상징적 서술이다. 즉, 개념, 정의, 명제 등과 같은 관계 서술문이 내적으로 구성된 집합체로 현상의 체계적 견해를 서술, 설명, 예측, 통제의 기능으로 표현하는 것이다. 간호이론은 간호영역 내 현상을 규명하며 간호학의 이론적 영역과 간호실무가 어떻게 연관되어 있는지를 보여준다. 2. 간호이론의 기능 간호이론은 서술, 설명, 예측, 통제에 유용하며 모든 과학적 노력에서 중심과정이라 할 수 있다. 또한 논리적이고 검증 가능한 가설의 ...2025.01.12
