총 4개
-
소프트웨어개발실무 ) 논문 내용 정리 - Going deeper with convolution2025.04.281. GoogLeNet GoogLeNet은 22개의 계층으로 이루어진 깊은 네트워크로, 분류와 검출 부문에 출하되었다. GoogLeNet의 매개변수는 최고의 정확도를 보이며, 2년 전 ILSVRC 14 대회에서 우승한 Krizhevsky의 아키텍처보다 12배나 적게 매개변수를 이용하였지만, 훨씬 향상된 정확도를 보인다. GoogLeNet은 효율을 극대화한 DNN 아키텍처로, 인셉션이라는 코드 이름의 컴퓨터 비전을 위한 것이다. 인셉션 모듈의 형식을 취하며 새로운 조직 level을 소개하고, 네트워크의 깊어진 깊이를 제시한다. 2. ...2025.04.28
-
자동차 엔진 센서 데이터를 이용한 AI 자동 검사 모델2025.11.131. CNN 딥러닝 모델 Convolutional Neural Network(CNN) 모델을 자동차 엔진 센서 데이터 분석에 적용하여 97.35%의 높은 정확도를 달성했습니다. CNN은 인접한 센서 값들 간의 패턴을 효과적으로 학습하며, kernel size 3으로 설정하여 최적의 성능을 보였습니다. 정밀도 97.04%, 재현율 97.5%, F1 스코어 97.27%, AUC 99.43%의 우수한 평가지표를 기록했으며, 과적합 없이 400 epoch 동안 안정적으로 학습되었습니다. 2. 엔진 상태 예측 및 자동 검사 Ford 자동차 ...2025.11.13
-
VQGAN 논문 (인공지능) 발표 및 대본2025.05.071. VQGAN 모델 VQGAN은 VQ-VAE 구조를 따르며 CNN과 Transformer의 장점을 결합한 모델입니다. CNN으로 Locality를 잘 반영하는 codebook을 학습하고, Transformer의 풍부한 표현력으로 Image Synthesis를 이룹니다. VQGAN은 2-stage 모델로, 첫번째 stage에서 codebook을 학습하여 Transformer에 사용하기 위한 이미지의 구성요소를 학습하고, 두번째 stage에서 이러한 codebook을 바탕으로 Transformer를 이용하여 이미지를 구성합니다. 2....2025.05.07
-
텐서플로우 딥러닝 (CNN)2025.05.051. 데이터 세트 학습 데이터에 사용할 영상은 Google에서 이미지 검색으로 꽃을 검색하고, FatKun이라는 크롬 확장 프로그램을 사용하여 영상을 다운로드 받았다. 테스트 데이터에 사용할 영상은 꽃을 직접 구입하여 촬영한 영상 데이터를 사용했다. 학습 데이터는 총 234개, 테스트 데이터는 총 150개이며, 검증 데이터는 훈련데이터의 20%를 사용하여 총 57개이다. 2. 합성곱 신경망 (CNN) 기본적으로 이미지 분류를 하기 위해서는 합성 곱 신경망(CNN)이 필요하다. 2차원 CNN의 특징 추출 부분은 MaxPool2D층과 ...2025.05.05
