총 901개
-
금속 이온의 불꽃 색상과 수소 원자의 에너지 준위2025.01.041. 금속 이온의 불꽃 색상 불꽃 실험에서 관찰되는 다양한 색상은 특정 금속 이온과 결합된 물질이 타면서 나타나는 현상입니다. 예를 들어, 초록색 불꽃은 바륨(Ba²⁺) 이온에 의해, 빨간색 불꽃은 스트론튬(Sr²⁺) 이온에 의해, 오렌지색 불꽃은 칼슘(Ca²⁺) 이온에 의해 생성됩니다. 이는 각 금속 이온이 가지는 고유의 에너지 수준과 전자의 에너지 상태 변화에 따른 빛의 방출로 설명할 수 있습니다. 2. 수소 원자의 에너지 준위 수소의 방출 스펙트럼이 선 스펙트럼인 것은 수소 원자 내 전자의 에너지 상태가 양자화되어 있음을 의미...2025.01.04
-
신소재에너지 - 탄소 소재의 정의, 종류, 리튬이온전지 적용 및 향후 전망2025.01.031. 탄소 소재의 정의 및 특징 탄소 소재는 지구상에서 가장 흔한 자원 중 하나인 탄소를 이용하여 나노 단위의 물질을 원자, 분자 수준에서 나노 기술과 결합해 가공하여 사용하고 있다. 탄소 소재는 매우 가벼우며 강하고, 열 및 전기 전도성이 우수하기 때문에 항공, 수송차, 경량 복합소재, 2차 전지 등으로 사용되며 4차 산업 혁명을 이끌 핵심적인 소재로 손꼽히고 있다. 2. 탄소 소재의 종류 탄소 소재는 원자 배치 구성에 따라 주로 6가지 소재로 분류되며 흑연(Graphite), 탄소 섬유, 카본 블랙, 탄소 나노 튜브, 활성 탄소...2025.01.03
-
고에너지 밀도와 내구성을 가진 고체 리튬 금속 배터리를 위한 쌍성 고분자 기반 리튬 슈퍼이온 전도체2025.04.291. 쌍성 고분자 기반 리튬 슈퍼이온 전도체 본 연구에서는 고이온 전도도(σ = 3.8 × 10−4 S cm−1)와 리튬 이온 수송 수(tLi+ = 0.78)를 가진 쌍성 고분자 전해질(ZPE)을 개발했습니다. 이 ZPE는 정렬된 이온 채널을 통해 빠른 리튬 이온 전도를 가능하게 합니다. 또한 in-situ 중합을 통해 전극과의 밀접한 접촉과 최대의 이온-이온 상호작용을 달성했습니다. 이를 통해 고에너지 밀도와 내구성이 우수한 고체 리튬 금속 배터리를 개발할 수 있었습니다. 2. 고체 리튬 금속 배터리 고체 리튬 금속 배터리(ASS...2025.04.29
-
리튬-이온 전지 기술의 시대를 넘어서 - Beyond the age of lithium-ion batteries2025.01.021. 리튬-이온 전지 리튬-이온 전지는 정보통신 기기에서 널리 사용되는 기술로, 높은 에너지 밀도, 가벼운 무게, 얇은 두께, 빠른 충전, 긴 사용시간 등의 장점을 가지고 있다. 하지만 과열 및 발화의 가능성, 독성 화학 물질 포함, 리튬의 고가격과 공급 불안정성 등의 단점이 있어 대체 기술이 필요한 상황이다. 2. 나트륨-이온 배터리 나트륨-이온 배터리는 리튬-이온 전지를 대체할 수 있는 유력한 기술 중 하나이다. 나트륨은 리튬에 비해 매장량이 풍부하고 가격이 저렴해 공급이 안정적이다. 최근 연구에서는 티타늄 도핑을 통해 나트륨-...2025.01.02
-
[무기화학실험 A+] ZnSO4 7H2O 합성과 이온화 경향2025.01.171. ZnSO4·7H2O 합성 이번 실험은 ZnSO4·7H2O 합성과 이온화 경향을 알아보는 실험이다. CuSO4·5H2O와 Zn을 반응시켜 ZnSO4·7H2O를 합성한다. 이온화 경향을 이용하여 순도 높은 ZnSO4·7H2O의 결정을 만든다. 2. 이온화 경향 이온화 경향은 수용액에서 환원 능력 순서로 원소들을 나열한 것이다. Zn이 Cu보다 전자를 더 잘 잃어버리므로 Zn>H>Cu 순으로 이온화 경향이 크다. 이를 이용하여 원하는 금속만 석출시킬 수 있다. 3. 이온화 에너지 이온화 에너지는 기체 상태의 원자 또는 이온으로부터 ...2025.01.17
-
전고체 배터리 기초와 개발 방향 탐구2025.11.121. 리튬 이온 전지의 기초 리튬 이온 전지는 화학 에너지를 전기 에너지로 전환하여 에너지를 저장하는 2차 전지입니다. 음극(흑연), 양극(금속 산화물), 분리막, 전해질로 구성되며, 충전 시 양극에서 음극으로 리튬 이온이 저장되고 방전 시 역방향으로 이동합니다. 용량은 저장된 전하의 양(Ah 단위)이고, 에너지는 일을 할 수 있는 능력(Wh 단위)입니다. 전해질은 넓은 에너지 갭을 가져야 하며, 주로 유기 액체 전해질이 사용됩니다. 2. 전고체 배터리의 등장 배경 및 리튬 메탈 배터리 초기 리튬 이온 배터리는 리튬 메탈을 사용했으...2025.11.12
-
리튬 이온 배터리 열폭주 연구제안서2025.01.291. 리튬이온배터리 열 폭주 리튬이온배터리의 열 폭주 현상을 다양한 조건 아래서 실험을 통해 비교 분석하고, 열 폭주 매커니즘을 분석하여 이상징후를 계측하는 적정 환경변수를 도출하고자 한다. 또한 일반 소화기와 리튬이온배터리 전용 소화기의 효과를 검증하여 리튬이온배터리 화재 시 효과적인 소화 방법을 연구하고자 한다. 2. 리튬이온배터리 화재 방지 리튬이온배터리의 화재 방지를 위해 과충전 방지 첨가제, 안전장치 등 다양한 기술을 검토하고, 열감응식 자동 소화장치와 에어로졸 소화포와 같은 화재 진압 기술을 연구하고자 한다. 3. 리튬이...2025.01.29
-
전고체 배터리 기술 동향2025.04.261. 전고체 배터리 기술 전고체 배터리는 기존 리튬이온 배터리와 달리 전해질이 액체가 아닌 고체 상태로 구성되어 있습니다. 이를 통해 배터리의 안전성과 에너지 밀도를 높일 수 있습니다. 전고체 배터리는 폭발이나 화재의 위험성이 낮고, 부품 수를 줄일 수 있어 전기차 배터리에 적합한 기술로 주목받고 있습니다. 하지만 고체 전해질의 낮은 이온 전도도가 문제점으로 지적되고 있으며, 이를 해결하기 위한 소재 개발 및 제조 기술 향상이 필요한 상황입니다. 2. 리튬이온 배터리 기술 리튬이온 배터리는 양극, 음극, 분리막, 전해질로 구성되어 ...2025.04.26
-
리튬이온전지의 역사 발표자료, John B. Goodenough, M. Stanley Whittingham, Akira Yoshino등의 업적 소개2025.05.061. 리튬이온전지의 역사 리튬이온전지의 발전 과정을 소개하고 있습니다. 1960년대부터 리튬이온전지 구조 개발이 시작되었고, 1970년대 석유 파동으로 인해 에너지 저장 기술의 필요성이 대두되었습니다. 1976년 John B. Goodenough와 Stanley Whittingham이 각각 NASICON 구조와 TiS2/Li 이차전지를 개발했습니다. 이후 John B. Goodenough가 LiCoO2/Li 전지를 개발하여 전압을 2배 높였고, Akira Yoshino이 탄소 소재를 음극으로 사용하여 폭발 위험을 낮추는 데 기여했습...2025.05.06
-
프랑크헤르츠 실험: 에너지 양자화 측정2025.11.161. 에너지 양자화 프랑크헤르츠 실험은 원자의 에너지 준위가 양자화되어 있음을 증명하는 실험입니다. 전자가 원자와 충돌할 때 원자의 에너지 준위 차이에 해당하는 에너지만 흡수하여 여기 상태로 올라갑니다. 가속전압을 증가시키면서 전류 변화를 측정하면 특정 전압에서 급격한 전류 감소가 나타나는데, 이는 전자가 원자의 첫 번째 여기에너지와 같은 에너지를 가질 때 완전비탄성충돌이 일어나기 때문입니다. 2. 탄성충돌과 비탄성충돌 프랑크헤르츠 실험에서 전자와 원자의 충돌은 두 가지 유형으로 나뉩니다. 탄성충돌은 전자가 운동에너지를 거의 잃지 ...2025.11.16
