
총 47개
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
인공지능이 어떻게 사람처럼 생각하게 되는가2025.05.081. 파블로프의 개 실험 파블로프의 개 실험은 동물의 학습과 조건부 반사에 대한 연구를 통해 일반화된 원리를 밝힌 실험입니다. 개에게 음식과 종소리를 연결시켜 종소리만으로도 침샘 분비 반응이 나타나는 조건부 반사를 관찰하였습니다. 이 실험은 행동심리학과 학습 이론에 큰 영향을 주었습니다. 2. 인공 신경망의 학습 인공 신경망은 입력과 출력 사이의 연관성을 학습하는 과정을 거칩니다. 초기에는 무작위로 설정된 가중치와 편향을 학습 데이터를 통해 조정하여 정확한 출력을 만들 수 있도록 개선됩니다. 이는 파블로프의 개 실험에서 관찰된 자극...2025.05.08
-
자연어처리 대표논문 읽기 과제2025.01.121. 신경 기계 번역 신경 기계 번역은 최근에 제안된 기계 번역 접근법으로, 기존의 통계 기계 번역과 달리 단일 신경망을 구축하여 번역 성능을 극대화하는 것을 목표로 합니다. 본 논문에서는 기존 신경 기계 번역 모델의 한계를 극복하기 위해 RNN 검색 모델을 제안하였고, 이를 통해 소스 문장의 관련 단어나 주석과 대상 단어를 올바르게 정렬할 수 있게 되었습니다. 실험 결과 제안된 모델이 기존 인코더-디코더 모델을 크게 능가하고 문장 길이에 더 견고한 것으로 나타났습니다. 2. 기계 번역 기계 번역은 소스 문장 x의 조건부 확률 p(...2025.01.12
-
컴퓨터 처리장치의 최신동향에 대하여 조사하고 설명하시오.2025.01.121. 중앙 처리 장치(CPU)의 발전 중앙 처리 장치(CPU)의 발전은 코어 수 증가, 클록 속도 향상, 에너지 효율성 증대 등의 측면에서 이루어지고 있다. 이를 통해 다중 처리 작업, 고성능 컴퓨팅, 전력 소비 감소 등이 가능해지며, 다양한 산업 분야에 혁신을 가져오고 있다. 2. 그래픽 처리 장치(GPU)와 병렬 처리의 진화 그래픽 처리 장치(GPU)의 사용 범위가 확장되어 인공지능 및 기계 학습 분야에서 활용되고 있다. GPU의 병렬 처리 능력을 활용하여 대규모 데이터셋에서의 복잡한 연산을 효율적으로 수행할 수 있다. 이와 함...2025.01.12
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
딥러닝을 이용한 COVID-19 흉부 X선 영상 자동 탐지2025.01.031. COVID-19 진단 이 연구에서는 COVID-19 환자를 식별하기 위해 흉부 X선 영상을 사용했습니다. DenseNet169 심층 신경망을 사용하여 이미지 특징을 추출하고 XGBoost 알고리즘을 통해 분류를 수행했습니다. 제안된 방법은 기존 방법보다 더 정확하고 빠르며 허용 가능한 성능을 보였습니다. 이는 의료 영상 분석과 방사선학 분야에서 딥러닝의 발전을 보여줍니다. 2. XGBoost 알고리즘 XGBoost는 2016년 Chen & Guestrin이 제안한 트리 부스팅 기반의 효율적이고 확장 가능한 알고리즘입니다. 여러...2025.01.03
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
텐서플로우 딥러닝 (CNN)2025.05.051. 데이터 세트 학습 데이터에 사용할 영상은 Google에서 이미지 검색으로 꽃을 검색하고, FatKun이라는 크롬 확장 프로그램을 사용하여 영상을 다운로드 받았다. 테스트 데이터에 사용할 영상은 꽃을 직접 구입하여 촬영한 영상 데이터를 사용했다. 학습 데이터는 총 234개, 테스트 데이터는 총 150개이며, 검증 데이터는 훈련데이터의 20%를 사용하여 총 57개이다. 2. 합성곱 신경망 (CNN) 기본적으로 이미지 분류를 하기 위해서는 합성 곱 신경망(CNN)이 필요하다. 2차원 CNN의 특징 추출 부분은 MaxPool2D층과 ...2025.05.05
-
인공지능이 어떻게 사람처럼 생각할 수 있는가2025.05.081. Pavlov's Dog Experiment Pavlov의 개 실험은 동물 학습과 조건 반사에 대한 연구를 통해 일반화된 원리를 밝혀냈습니다. 이 실험은 1890년대부터 1900년대 초반에 걸쳐 진행되었으며, 현대 심리학과 행동 심리학의 중요한 기반이 되었습니다. Pavlov의 실험은 주로 개를 대상으로 이루어졌는데, 개에게 먹이를 줄 때 종소리를 울리는 등의 조건을 주고 타액 분비 반응을 관찰했습니다. 초기에는 음식을 보고 타액이 분비되는 것이 개의 자연스러운 반응이었지만, 종소리와 먹이의 연결이 지속되면서 개들은 종소리만으로...2025.05.08
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21