
총 44개
-
RL회로의 시정수 측정회로 및 방법설계2025.05.151. RL 회로의 시정수 측정 실험을 통해 10mH 인덕터의 시정수를 측정하였다. DMM을 통해 인덕터의 저항을 26.9Ω으로 측정하였고, 1KΩ의 가변저항을 사용하여 10us의 시정수를 갖는 RL 회로를 구성하였다. 오실로스코프를 통해 측정한 결과, 시정수가 8us로 나타났는데, 이는 이론값과 약 20% 정도의 오차가 있었다. 오차의 원인으로는 가변저항과 인덕터의 오차, 측정 과정에서의 오차 등이 있었다. 2. 입력 전압의 OFFSET 및 크기 변화에 따른 영향 입력 전압의 OFFSET을 제거하고 크기를 5V로 증가시켜 실험을 반...2025.05.15
-
중앙대학교 전기회로 설계실습 결과보고서 7. RC회로의 시정수 측정회로 및 방법설계2025.04.291. RC 회로 이번 실험에서는 저항과 커패시터로 구성된 RC 회로의 time constant를 측정하는 방법에 대해 알아보았으며, 오실로스코프에 나타나는 파형을 통해 커패시터와 time constant의 기능과 동작 원리, 의미 등을 확인할 수 있었다. DMM의 내부 저항과 커패시터를 활용하여 RC time constant를 측정하고, 이론값과 비교하여 오차율을 분석하였다. 또한 Function generator를 이용하여 RC 회로의 동작을 관찰하고, 사각파 입력 시 커패시터의 충전 및 방전 특성을 확인하였다. 2. DMM 내부...2025.04.29
-
아주대학교 A+전자회로실험 실험4 예비보고서2025.05.091. 정궤환 회로 실험 목적은 연산 증폭기를 사용하여 정궤환 회로를 구성하고, 슈미트 트리거(Schmitt trigger) 회로, 사각파 발생 회로의 구성과 역할에 대해 알아보는 것입니다. 회로를 구성하여 각 경우에 대한 V_TL, V_TH, +V_sat, -V_sat을 측정하여 이들이 의미하는 바를 알아보고, 이론에서 배운 내용을 실험을 통해 증명하는 것이 목표입니다. 2. 슈미트 트리거 회로 슈미트 트리거 회로는 일반적인 소자(V_ILmax, V_IHmin)와 다르게 V_TL, V_TH라는 threshold가 있습니다. 출력이 ...2025.05.09
-
인덕터 및 RL회로의 과도응답(Transient Response) 결과보고서 (보고서 점수 만점/A+)2025.04.251. RL 회로 10mH 인덕터와 1kΩ의 저항을 사용하여 RL회로를 구성하고 오실로스코프를 이용하여 RL time constant를 측정하였다. 입력전압은 FG를 사용하여 1V 사각파(high = 1V, low = 0V, duty cycle = 50%)로 인가하였다. 또한 인덕터가 충분한 자기에너지를 충전, 방전할 수 있도록 이 사각파의 주기를 10τ,즉,100μs로 설정하였다. 실험을 통한 시정수는 9.50μs였고 오차는 5%였다. 2. 입력전압 변화 입력전압을 ±0.5 V의 사각파(high = 0.5 V, low = - 0.5...2025.04.25
-
전기회로설계실습 예비보고서 10. RLC 회로의 과도응답 및 정상상태응답2025.01.171. RLC 직렬회로 특성 분석 이 보고서에서는 RLC 직렬회로의 과도응답과 정상상태응답을 분석하고 있습니다. 주요 내용은 다음과 같습니다: 1. RLC 직렬회로에서 R= 500 OMEGA, L= 10 mH, C= 0.01 μF인 경우 자연진동수(ω_o), 감쇠진동수(ω_d)를 계산하였습니다. 2. 입력이 사각파(0 to 1 V, 1 kHz, duty cycle = 50 %)인 경우 R, L, C에 걸리는 전압파형을 시뮬레이션하였습니다. 3. R = 4 k OMEGA이고 입력이 사각파(0 to 1 V, 1 kHz, duty cyc...2025.01.17
-
RLC 회로의 과도응답 및 정상상태응답 예비보고서 (보고서 점수 만점/A+)2025.04.251. RLC 직렬 회로의 과도 응답 및 정상 상태 응답 이 보고서는 RLC 직렬 회로의 과도 응답과 정상 상태 응답에 대해 다룹니다. 주요 내용은 다음과 같습니다: 1. RLC 직렬 회로에서 R=500Ω, L=10mH, C=0.01μF인 경우 ωo와 ωd를 계산합니다. 2. 위 회로에 입력이 사각파(0~1V, 1kHz, 듀티 사이클 50%)인 경우 R, L, C에 걸리는 전압 파형을 시뮬레이션하여 제출합니다. 3. R=4kΩ인 RLC 직렬 회로에 입력이 사각파(0~1V, 1kHz, 듀티 사이클 50%)인 경우 R, L, C에 걸리...2025.04.25
-
전기회로설계실습 7장 예비보고서2025.01.201. RC 회로의 시정수 측정 이 보고서에서는 RC 회로의 시정수를 측정하는 방법을 설계하고 있습니다. 먼저 DMM의 내부 저항을 측정하는 방법을 제시하고, 이를 이용하여 2.2 μF 커패시터의 충전 및 방전 시간을 측정하는 실험 절차를 설명합니다. 또한 시정수가 10 μs인 RC 회로를 설계하고, 이 회로에 0.5V 사각파를 인가했을 때의 저항 전압과 커패시터 전압 파형을 예상하고 있습니다. 마지막으로 RC 회로에 사각파를 인가했을 때의 저항과 커패시터의 전압 파형을 이론적으로 설명하고 있습니다. 1. RC 회로의 시정수 측정 R...2025.01.20
-
[A+] 중앙대학교 전기회로 설계실습 예비보고서 8. 인덕터 및 RL회로의 과도응답(Transient Response)2025.04.291. RL 회로의 과도응답 RL 회로의 과도응답 특성을 분석하고 실험을 통해 확인하였습니다. Time constant가 10 μs인 RL 직렬회로를 설계하고, Function Generator의 사각파 입력에 대한 저항과 인덕터의 전압 파형을 예측하고 실험으로 검증하였습니다. 또한 인덕터에 흐르는 전류와 저항에 걸리는 전압의 관계를 이해하고 이론적 근거를 설명하였습니다. 2. 인덕터 전압 특성 RL 회로에서 인덕터에 걸리는 전압은 시간에 따라 지수함수적으로 변화하며, 최대값에 도달하기 위해서는 최소 5τ 이상의 시간이 필요합니다. ...2025.04.29
-
미분회로와 적분회로 실험2025.01.021. RC 직렬회로 RC 직렬회로에 사각파와 삼각파 전원을 공급하면 출력 파형이 적분 또는 미분 파형으로 나타난다. 주파수가 증가하면 주기가 짧아지고, 시정수가 주기보다 길면 출력이 적분 파형, 짧으면 미분 파형이 된다. 커패시턴스 값이 커지면 RC 시정수가 증가하여 미분 파형이 나타난다. 2. RL 직렬회로 RL 직렬회로에 사각파를 입력하면 인덕터 양단의 전압 파형이 미분 파형으로 나타난다. RL 시정수가 입력 파형의 주기보다 짧기 때문이다. RC 회로와 비교하면 인덕터가 커패시터에 비해 충전과 방전이 빠르게 된다. 1. RC 직...2025.01.02
-
전기회로설계실습 결과보고서82025.05.151. 인덕터의 특성 이번 실습을 통해 인덕터의 특성을 이해하고 RL회로의 과도응답을 이해할 수 있었습니다. 사각파 형태로 전압이 입력될 때 인덕터를 포함한 회로의 전압이 exponential 형태로 증가하고 감소한다는 것을 확인했습니다. 또한 시정수의 5배 이상의 주기를 가져야 인덕터가 완전히 충전, 방전된다는 것을 알게 되었습니다. 2. RL 회로의 과도응답 이번 실습에서는 RL 회로의 과도응답을 실험적으로 확인할 수 있었습니다. 사각파 입력에 대한 저항과 인덕터의 전압 파형을 측정하여 이론적인 예상과 비교할 수 있었습니다. 주기...2025.05.15