총 42개
-
항공 응급 및 재난 상황 사례 분석2025.11.151. 항공기 내 배터리 폭발 사고 2023년 2월 미국 유나이티드 항공 2664편(보잉 737)에서 일등석 승객의 노트북 외부 배터리 팩이 폭발하여 화재가 발생했다. 승무원들이 파이어백으로 신속히 진압하여 큰 사고를 방지했으나 4명의 승무원이 부상을 입었다. 미국 연방항공청은 지난 한 해 동안 기내 리튬 이온 배터리 관련 사고 57건을 보고했으며, 각 항공사는 화재 진압 가방을 기내에 배치하고 있다. 2. 기내 심폐소생술(CPR) 항공기 내 심정지 환자 발생 시 지상과 다른 제한된 환경에서 CPR을 수행해야 한다. 기내 심정지는 대...2025.11.15
-
글로벌 기업의 소비자 손해배상 사례와 시사점2025.11.121. 삼성 갤럭시 노트 7 배터리 폭발 사건 2016년 삼성전자의 갤럭시 노트 7 출시 후 배터리 폭발 사건이 발생하여 소비자들이 신체적, 재산적 손해를 입었다. 삼성전자는 책임을 인정하고 전 세계적으로 리콜을 진행했으며, 소비자들에게 사과와 배상금을 지급했다. 이를 통해 글로벌 기업은 제품의 안전성과 품질에 대한 책임을 다해야 하며, 문제 발생 시 적절한 조치로 소비자 신뢰를 회복해야 함을 알 수 있다. 2. BP 딥워터 호라이즌 유출 사건 2010년 영국 석유회사 BP의 딥워터 호라이즌 오일 리그에서 대형 폭발이 발생하여 11명...2025.11.12
-
화학1 발표 자료 - 전고체 배터리2025.01.211. 리튬이온 전지 리튬이온전지는 리튬을 이용하여 충전과 방전을 반복하여 사용할 수 있는 2차전지로, 스마트폰을 비롯한 전자기기, 전기자동차의 배터리 등 현재 널리 사용되고 있습니다. 그러나 리튬이온전지에는 폭발 등의 안정성 문제가 있습니다. 2. 전고체 배터리 전고체 배터리는 리튬이온전지의 액체 전해질을 고체 형태로 바꾼 배터리입니다. 고체 전해질을 사용하면 외부의 충격이나 온도 변화로부터 안전성을 확보할 수 있고, 분리막도 필요하지 않게 됩니다. 또한 에너지 밀도가 높아 더 오랜 시간 동안 에너지를 공급할 수 있습니다. 하지만 ...2025.01.21
-
Fabrication of Li-oxygen batteries2025.01.241. Li-O2 배터리의 기본 원리 Li-O2 배터리의 기본적인 작동 원리를 설명하였다. 리튬 금속 음극과 공기극(cathode)으로 구성되며, 방전 시 리튬 금속이 산화되어 리튬 이온과 전자가 생성되고, 전자는 공기극으로 이동하여 공기 중의 산소를 환원시켜 Li2O2를 생성한다. 충전 시에는 이 Li2O2가 다시 리튬 이온과 산소로 분해된다. 하지만 실제로는 부반응 생성물이 형성되어 사이클 수명이 부족한 문제가 있다. 2. Li-O2 배터리의 제작 과정 Li-O2 배터리를 직접 제작하는 실험을 진행하였다. 양극(cathode)은 ...2025.01.24
-
전기자동차용 배터리 냉각 해석2025.05.011. 배터리 냉각 전기자동차 산업의 발달로 배터리 안전사고 발생도 증가하고 있다. 전기자동차는 주로 리튬-이온배터리를 사용하고 있으며, 각형 배터리, 파우치형 배터리, 원통형 배터리를 주로 사용하고 있다. 배터리들 각각의 냉각 방식이 다양하며, 본 연구에서는 배터리 형태에 따른 냉각효과를 분석해보며, 배터리의 shape에 따른 온도 분포를 분석해보는 활동이다. 2. 유한요소법 이 연구는 이를 FEM 방식을 이용하여 분석하는 활동이다. 분석하는 Tool로는 Ansys 프로그램을 이용하였으며, Static Structural과 Stea...2025.05.01
-
리튬 이온 배터리 열폭주 연구제안서2025.01.291. 리튬이온배터리 열 폭주 리튬이온배터리의 열 폭주 현상을 다양한 조건 아래서 실험을 통해 비교 분석하고, 열 폭주 매커니즘을 분석하여 이상징후를 계측하는 적정 환경변수를 도출하고자 한다. 또한 일반 소화기와 리튬이온배터리 전용 소화기의 효과를 검증하여 리튬이온배터리 화재 시 효과적인 소화 방법을 연구하고자 한다. 2. 리튬이온배터리 화재 방지 리튬이온배터리의 화재 방지를 위해 과충전 방지 첨가제, 안전장치 등 다양한 기술을 검토하고, 열감응식 자동 소화장치와 에어로졸 소화포와 같은 화재 진압 기술을 연구하고자 한다. 3. 리튬이...2025.01.29
-
리튬배터리 원리, 열폭주 현상 및 해결방안2025.01.171. 리튬배터리 원리 리튬이온배터리는 리튬 이온이 양극재와 음극재 사이를 이동하는 화학적 반응을 통해 전기를 만들어냅니다. 양극의 리튬 이온이 음극으로 이동하며 배터리가 충전되고, 음극의 리튬 이온이 양극으로 돌아가며 에너지를 방출하여 방전됩니다. 이때 양극과 음극 사이에서 리튬 이온의 이동통로 역할을 해주는 전해질과 양극과 음극이 서로 닿지 않게 해주는 분리막이 필요합니다. 리튬이온배터리의 4가지 구성요소는 양극재, 음극재, 전해질, 분리막입니다. 2. 리튬배터리 위험성 리튬이온 배터리는 강한 충격을 받거나 고온에 노출되면 액체인...2025.01.17
-
전고체 배터리 기술 동향2025.04.261. 전고체 배터리 기술 전고체 배터리는 기존 리튬이온 배터리와 달리 전해질이 액체가 아닌 고체 상태로 구성되어 있습니다. 이를 통해 배터리의 안전성과 에너지 밀도를 높일 수 있습니다. 전고체 배터리는 폭발이나 화재의 위험성이 낮고, 부품 수를 줄일 수 있어 전기차 배터리에 적합한 기술로 주목받고 있습니다. 하지만 고체 전해질의 낮은 이온 전도도가 문제점으로 지적되고 있으며, 이를 해결하기 위한 소재 개발 및 제조 기술 향상이 필요한 상황입니다. 2. 리튬이온 배터리 기술 리튬이온 배터리는 양극, 음극, 분리막, 전해질로 구성되어 ...2025.04.26
-
리튬이온석출2025.01.241. 리튬 이온 배터리의 이상 발열 대부분의 발열은 전지의 플러스와 마이너스가 직접 연결되는 단락이 원인이다. 단락하면 순간적으로 큰 전류가 흐르면서 심한 열도 발생한다. 리튬이온 배터리는 가연성 재료로 사용되고 있으므로 격렬한 발열은 발화와 폭발 등으로 이어질 위험이 높다. 2. 발화의 원인 외부단락, 과충전, 내부단락 등이 발화의 주요 원인이다. 전지를 보관이나 폐기할 때는 양극이나 음극의 단자를 노출하지 말고 절연 처리해야 하며, 과충전을 피해야 한다. 내부단락은 전지 내부 구조 파괴나 분리막 불량, 오염, 금속 석출 등에 의...2025.01.24
-
리튬이온 배터리 레포트2025.01.221. 리튬이온 배터리의 구조와 원리 리튬이온 배터리는 2차전지 종류 중 하나로 양극과 음극 물질의 산화 환원 반응을 통해 화학적 에너지를 전기적 에너지로 변환시키는 장치입니다. 리튬이온 배터리의 구조는 양극재, 음극재, 전해질, 분리막으로 구성되어 있으며, 충전 과정에서 리튬이온은 전해액을 통해 음극으로 이동하고 전자는 전해액이 아닌 양극과 음극이 연결된 외부 도선을 타고 음극으로 이동합니다. 반대로 방전과정에서 음극은 산화반응이 일어나 리튬이온이 전해질을 통해 양극으로 이동하게 되고 전자 또한 외부 도선을 통해 양극으로 이동하게 ...2025.01.22
