총 204개
-
공학수학 - 미분방정식2025.01.131. 미분방정식의 용어 정의 미분방정식의 용어를 정의하고 설명하였습니다. 미분방정식은 상미분방정식(ODE), 편미분방정식(PDE), 계수, 제차 방정식, 선형 방정식 등으로 구분됩니다. 2. 1계 상미분 방정식 1계 상미분 방정식의 정의와 해법을 설명하였습니다. 완전 미분방정식과 불완전 미분방정식, 변수분리형 미분방정식, 선형 미분방정식 등의 해법을 다루었습니다. 3. 특수한 1계 미분방정식 베르누이, 리카티, 클레로 방정식 등 특수한 1계 미분방정식의 해법을 설명하였습니다. 4. n계 제차 미분방정식 n계 제차 미분방정식의 정의와...2025.01.13
-
[요약문] <공학수학> 1. 저계, 고계 미분방정식이론2025.01.131. 미분방정식 미분방정식의 용어와 정의, 1계 상미분 방정식의 해법, 완전 미분방정식과 불완전 미분방정식의 구분 및 해법, 특수한 1계 미분방정식(변수분리형, 동차형, 선형)의 해법 등을 설명하고 있습니다. 2. 고계 미분방정식 n계 제차 미분방정식과 n계 비제차 미분방정식의 정의와 해법, 실 계수 제차 미분방정식과 Cauchy-Euler 방정식의 해법 등을 설명하고 있습니다. 3. 2계 비선형 미분방정식 독립변수나 종속변수가 결여된 2계 비선형 미분방정식의 해법을 설명하고 있습니다. 1. 미분방정식 미분방정식은 수학의 중요한 분...2025.01.13
-
라플라스 변환의 원리와 미분방정식 해법2025.11.161. 라플라스 변환의 정의 및 원리 라플라스 변환은 미분방정식을 대수방정식으로 변환시켜 손쉽게 풀 수 있는 변환법입니다. 미분과 적분, 초월함수의 개념이 포함된 복잡한 미분방정식을 인수분해와 근의 공식 등으로 간단히 해결할 수 있습니다. 라플라스 변환은 선형성을 띠며, 변환된 식을 역변환하여 원래 미분방정식의 해를 얻습니다. 복잡한 역변환 과정은 변환 표를 참고하여 직관적으로 수행합니다. 2. 미분방정식의 실생활 응용 미분방정식은 물리학의 운동 방정식, 열 방정식, 슈뢰딩거 방정식 등에 사용됩니다. 공학에서는 회로 이론, 제어 시스...2025.11.16
-
파이썬으로 공학계산 따라하기 IV - 연립미분방정식2025.11.171. 연립미분방정식 (Series Reactions) A → B → C로 표현되는 연속 반응에서 각 물질의 농도 변화를 시간의 함수로 표현하기 위해 미분방정식을 순차적으로 풀어내는 방법을 다룬다. 비가역 비흡탈착 반응을 가정하여 반응속도식을 세우고, 각 단계별로 적분상수를 확정하여 최종 방정식을 도출한다. Sympy 라이브러리를 활용하여 복잡한 미분방정식의 일반해를 구하고, 이를 통해 CA, CB, CC의 농도 변화를 시간의 함수로 나타낸다. 2. Sympy 라이브러리를 이용한 미분방정식 풀이 Sympy의 dsolve 명령어를 사용...2025.11.17
-
공기저항을 고려한 자유낙하 물체의 미분방정식과 일반해2025.11.161. 자유낙하 물체의 미분방정식 수립 질량 m인 물체가 중력가속도 g로 정지상태에서 자유낙하할 때, 물체에 작용하는 힘은 중력 F_g = mg와 속도에 비례하는 공기저항 F_r = -kv입니다. 뉴턴의 제2법칙 F = ma를 적용하면, 물체의 운동방정식은 m(dv/dt) = mg - kv로 표현됩니다. 이를 정리하면 dv/dt = g - (k/m)v 형태의 1계 선형 상미분방정식이 됩니다. 이 방정식은 중력과 공기저항의 균형을 나타내며, 물체의 속도 변화를 시간에 따라 기술합니다. 2. 선형 상미분방정식의 일반해 구하기 dv/dt ...2025.11.16
-
파이썬으로 미분방정식 수치해 구하기 (odeint)2025.11.171. 미분방정식의 수치해 공학계산에서 일반해를 구하기 어려운 미분방정식을 scipy 라이브러리의 odeint 명령어를 이용하여 수치해를 구하는 방법을 설명합니다. 복잡한 연립 미분방정식의 경우 함수를 시간 변수에 관한 식으로 표현하기 어려우므로, 각 시간값에 따른 함수값을 직접 계산하여 수치적 근사값을 도출하는 접근 방식을 사용합니다. 2. odeint를 이용한 연립 미분방정식 풀이 scipy.integrate의 odeint 함수를 사용하여 3개 이상의 연립 미분방정식을 동시에 풀 수 있습니다. 미분방정식을 def/return 구문...2025.11.17
-
파이썬으로 미분방정식의 일반해 구하기2025.11.171. 미분방정식의 일반해 화학반응에서 반응속도식 -rA = -dCA/dt = k × CA 형태의 미분방정식을 풀어 일반해를 구하는 방법을 다룬다. sympy 라이브러리의 dsolve 명령어를 사용하여 복잡한 수기 계산 없이 파이썬으로 미분방정식을 해결할 수 있다. 초기조건 CA(0) = CA0를 적용하여 적분상수를 결정하고, 최종적으로 CA(t) = CA0 × exp(-k×t) 형태의 해를 얻는다. 2. 화학반응속도론 A → B로의 비가역반응에서 반응속도식은 -rA = k × CA 형태이며, 이를 농도의 시간변화로 표현하면 -dCA...2025.11.17
-
파이썬으로 미분방정식 수치해 구하기2025.11.171. scipy.integrate.solve_ivp scipy 라이브러리의 solve_ivp 함수를 이용한 미분방정식의 수치해 계산 방법. 초기값 문제(Initial Value Problem)를 해결하기 위해 주어진 포맷에 미분방정식과 초기조건을 입력하여 계산. 라이브러리를 활용하므로 복잡한 알고리즘 구현 없이 쉽게 접근 가능하며, 결과는 시간에 따른 농도 변화를 배열 형태로 반환. 그래프 시각화를 통해 결과의 경향을 확인하는 것이 중요. 2. Runge-Kutta 4차 방법 수치해석에서 일반적으로 사용되는 Runge-Kutta 4...2025.11.17
-
다양한 선형 미분 방정식의 MATLAB 풀이2025.01.161. 선형 미분 방정식 주어진 선형 미분 방정식의 해를 MATLAB을 사용하여 그래프로 나타내었습니다. 다양한 형태의 선형 미분 방정식 해를 구하고 그래프로 표현하는 방법을 설명하였습니다. 2. 지수적 감쇠 정현파 지수적 감쇠 정현파 신호를 MATLAB을 이용하여 분석하였습니다. 지수 매개변수 a의 값을 변화시켜가며 신호 x(t)에 미치는 영향을 조사하였습니다. 3. 연속 주기 파형 MATLAB을 사용하여 구형파와 톱니파와 같은 연속 주기 파형을 표현하는 방법을 설명하였습니다. 진폭, 주파수, 듀티 사이클 등의 파라미터를 조절하여 ...2025.01.16
-
파이썬을 이용한 공학계산의 미분방정식 적용예2025.11.171. 자유낙하 운동과 2차 미분방정식 특정 높이에서 돌을 떨어뜨리는 상황에서 가속도는 y'' = d²y/dx² = g 형태의 2차 미분방정식으로 표현됩니다. 이를 적분하면 속도 y' = g*x + v0, 거리 y = 1/2*g*x²을 얻습니다. 초기조건 y0=0, v0=0을 적용하면 y = 1/2*g*x²이 되며, 파이썬을 통해 그래프로 표현하면 직관적으로 시간에 따른 낙하거리를 파악할 수 있습니다. 2. 인구증가 모델과 1차 미분방정식 인구증가 속도 y' = k*y 형태의 1차 미분방정식으로 모델링됩니다. 미국 인구 데이터(180...2025.11.17
