총 163개
-
융합시스템공학입문 - 딥러닝응용 학습계획2025.11.171. 스마트생산과 딥러닝 스마트생산은 정보기술과 자동화기술을 활용하여 생산과정을 효율적으로 관리하는 방법이다. 딥러닝은 스마트생산에서 이미지인식, 예측분석, 자동화, 품질개선 등 다양한 측면에서 중요한 역할을 한다. 센서기술로 데이터를 수집하고 인공지능과 머신러닝으로 생산계획을 최적화하며, 딥러닝을 활용하여 생산효율화와 품질향상, 자동화강화를 통해 생산성을 향상시킬 수 있다. 2. 딥러닝 학습의 수학적 기초 딥러닝은 선형대수, 미적분, 확률과통계 등의 수학적 개념에 기반하고 있어 수학적 지식을 요구한다. 수학적 이론과 공식이 이해하...2025.11.17
-
경영정보시스템과 인공지능(AI) 기술의 발전 및 응용2025.01.241. 약한 인공지능과 강한 인공지능 인공지능은 수행 능력과 인지 수준에 따라 약한 인공지능(Narrow AI)과 강한 인공지능(General AI)으로 구분됩니다. 약한 인공지능은 특정 과제에 특화된 지능으로, 인간의 뇌와 같은 종합적 사고를 하진 않지만 특정 목적을 달성하기 위해 최적화된 지능입니다. 반면 강한 인공지능은 인간과 비슷한 수준의 종합적인 사고와 문제 해결 능력을 가진 지능을 목표로 합니다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning)은 인공지능의 한 분야로, 컴퓨터가 데이터를 기반으로 스스로...2025.01.24
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.291. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 자연어를 이해하고 생성하는 데 중점을 둔 모델입니다. 방대한 데이터 학습, 자연어 생성 능력, 단일 모달리티 처리가 주요 특징이며, 챗봇, 문서 요약 및 생성, 번역 시스템, 코딩 보조 도구 등에 활용됩니다. 2. LMM(Large Multimodal Model) LMM은 텍스트, 이미지, 오디오, 비디오와 같은 다양한 형태의 데이터를 동시에 처리할 수 있는 모델입니다. 다양한 데이터 소스, 상호작용 능력, 복합적 태스크 수행이 주요 특징이...2025.01.29
-
화학공학을 위한 머신러닝과 딥러닝 기본이론2025.11.181. 지도학습 알고리즘 나이브 베이즈 분류, 선형판별분석, K-최근접 이웃, 서포트 벡터 머신, 랜덤 포레스트, 그레디언트 부스트, 신경망 등의 지도학습 알고리즘들을 다룬다. 이들은 정답이 있는 데이터를 활용하여 분류와 회귀 문제를 해결하는 기계학습 기법이다. 각 알고리즘은 서로 다른 수학적 원리와 최적화 방법을 기반으로 하며, 화학안전 분야에 적용하기 위해서는 선형대수학, 미분적분학 등의 기초 수학 이해가 필수적이다. 2. 비지도학습 및 군집화 K-평균 군집화, 계층적 군집화, 밀도 기반 클러스터링(DBSCAN) 등의 비지도학습 ...2025.11.18
-
딥러닝의 EEG 신호 분석에서의 활용과 CNN의 원리2025.01.141. 딥러닝 기반 EEG 분석 딥러닝 기법들은 동작상상, 감정인식 등 EEG 데이터 분류 작업에서 우수한 성능을 보인다. 딥러닝 알고리즘은 EEG 데이터 수집과 전처리, 딥러닝 모형 학습, 신호 분류 및 해석의 과정으로 구성된다. 전처리 과정에서는 입력받은 뇌파 신호를 분류하기 쉬운 형태로 바꿔주어 분류의 정확도를 높여야 한다. 2. EEG분석을 위한 딥러닝 기법 EEG 분석을 위한 딥러닝 기법에는 CNN, RNN, GAN, Autoencoder 등이 있다. 입력되는 데이터의 특징에 따라 CNN보다 RNN이 자극에 의한 변화를 인식...2025.01.14
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정 및 충돌방지2025.05.091. 객체 인식 (Object detection) 이미지에서 객체를 찾고 분류하는 프로세스. MATLAB 딥러닝 기법 중 'R-CNN Object Detector'를 이용하여 영상 이미지 인식 방법을 사용한다. 2. R-CNN: Regions with Convolutional Neural Networks R-CNN 프로세스는 Windows 10, MATLAB 2018b, NVIDIA CUDA Tool kit v10.0, NVIDIA GeForce GTX 750 Ti 개발환경에서 진행되었다. 3. 딥러닝 학습 과정 imageDatas...2025.05.09
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.121. 약한 인공지능과 강한 인공지능의 비교 인공지능은 강한 인공지능과 약한 인공지능으로 구분됩니다. 강한 인공지능은 사람과 같은 지능을 가진 인공지능이고, 약한 인공지능은 특정 문제 또는 분야에 국한해 인간처럼 지능적 행동을 할 수 있는 인공지능입니다. 강한 인공지능은 마음을 가지고 사람처럼 느끼며 지능적으로 행동하는 기계이지만, 약한 인공지능은 사람의 지능적 행동을 흉내낼 수 있는 수준에 불과합니다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 시스템의 패턴과 추론에 의존해 명시적 지시 없이도 태스크에 대한 수행에 사용하는 알고...2025.05.12
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.261. LLM(대규모 언어 모형) LLM은 주로 텍스트 데이터를 기반으로 학습된 모델로, 자연어 이해(NLU)와 자연어 생성(NLG)에 강점을 지닌다. 대표적인 예로는 OpenAI의 GPT 시리즈가 있으며, 이들은 방대한 양의 텍스트 데이터를 학습하여 인간과 유사한 수준의 텍스트 생성 능력을 보유하고 있다. LLM은 주로 챗봇, 자동 번역, 텍스트 요약, 감정 분석 등 다양한 언어 처리 작업에 활용된다. 2. LMM(대규모 멀티모달 모형) LMM은 텍스트뿐만 아니라 이미지, 음성, 비디오 등 다양한 형태의 데이터를 동시에 처리할 수 ...2025.01.26
-
경영정보시스템의 인공지능 개념, 기술 및 활용사례2025.11.181. 약한 인공지능과 강한 인공지능 약한 인공지능(Weak AI)은 특정 작업에 대한 지능을 표현하며 음성 인식, 이미지 인식, 추천 시스템 등에 활용된다. 강한 인공지능(Strong AI)은 어떤 작업에 대해서든 지능을 표현할 수 있는 능력을 가지지만 현재는 이론적 개념에 불과하다. 약한 인공지능은 특정 영역에서 뛰어난 성능을 발휘하지만 범위를 벗어나면 유용하지 않은 반면, 강한 인공지능은 인간의 지능을 모방하여 어떠한 문제도 해결할 수 있는 일반 지능을 가진다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning...2025.11.18
