총 80개
-
[A+레포트] 외생변수란 무엇이며, 왜 문제가 되는지 강의내용을 중심으로 작성하시오.2025.01.121. 외생변수의 정의와 특징 외생변수는 연구자가 연구 설계에서 직접적으로 조작하거나 통제하지 않는 변수이며, 연구 대상의 결과에 영향을 줄 수 있는 외부 요인을 의미한다. 이러한 변수는 연구 모델 내의 종속변수에 영향을 미칠 수 있지만, 연구자에 의해 측정되거나 조정되지 않는다. 외생변수는 연구의 내적 타당성을 위협하는 요인 중 하나로 간주되며, 연구 결과의 변동성을 설명하는 데 중요한 역할을 한다. 2. 외생변수가 연구에 미치는 영향 외생변수는 연구 결과의 타당성과 신뢰성을 손상시킬 수 있다. 외생변수가 연구 결과에 미치는 영향은...2025.01.12
-
2계 선형 상미분방정식의 모델링과 현상 예측2025.11.151. 2계 선형 상미분방정식의 정의 및 응용 2계 선형 상미분방정식은 물리학의 운동방정식, 파동방정식, 경제학의 투자 이론 및 금융 이론 등 다양한 분야에서 활용됩니다. 이는 2차 도함수를 포함하는 미분방정식으로, 복잡한 현상을 수학적으로 표현하고 분석하는 데 필수적인 도구입니다. 2. 모델링을 통한 현상 예측 프로세스 모델링 과정은 문제 정의, 데이터 수집, 방정식 수립, 해 도출, 예측, 검증의 5단계로 진행됩니다. 정확한 데이터 수집과 적절한 초기 조건 및 경계 조건 설정이 중요하며, 예측 결과를 실제 현상과 비교하여 모델의 ...2025.11.15
-
대학수학에서 배우는 수학, 배우고 싶은 수학2025.01.211. 미적분학 미적분학은 변화율과 누적값을 다루는 수학의 기초 분야로, 연속적인 변화를 다루며 극한, 미분, 적분 개념을 중심으로 한다. 물리학, 공학, 경제학 등 거의 모든 과학 분야에서 광범위하게 사용되며, 건축 분야에서는 구조물의 응력 분석, 열 전달 계산, 곡면 설계 등에 활용된다. 2. 선형대수학 선형대수학은 벡터, 행렬, 선형 변환 등을 연구하는 분야로, 다차원 공간에서의 선형 관계를 다루며 연립방정식 해법에 중점을 둔다. 컴퓨터 그래픽스, 기계 학습, 양자 역학 등에서 핵심적인 역할을 하며, 건축 분야에서는 3D 모델링...2025.01.21
-
전공 역량이 돋보이는 수학 과세특 모음2025.05.161. 황금비율과 이차방정식 수학 보고서 수행평가 프로젝트에서 황금비율과 이차방정식을 주제로 하여 주변에서 찾아볼 수 있는 황금비율의 예시를 다양하게 들며 이차방정식과 연계하는 보고서를 작성하여 자신이 희망하는 미술관련 진로와도 연결지어 수학의 유용성을 알고 있음을 확인함. 2. 이차함수와 빛의 관계 수학 보고서 수행평가 프로젝트에서 이차함수와 빛의 관계를 주제로 하여 이차곡선에서 빛의 반사각과 입사각이 이차함수와 관련되어 있음을 알아내는 계기로 삼았으며 이를 통해 스스로 수학에 대한 흥미, 수학적 창의성, 수학적 의사소통능력이 향상...2025.05.16
-
[한양대 기계공학부] 동역학제어실험 실험5 외팔보의 고유 진동수 측정 및 스트로보스코프를 이용한 고유 진동 모우드의 가시화 A+ 자료2025.04.261. 외팔보의 고유 진동수 외팔보의 고유 진동수와 고유 진동 모우드를 해석적인 방법으로 구해 보고, 실험 결과와 비교한다. 그리고 연속계에 대한 고유 진동수와 진동 모우드를 이해한다. 2. 외팔보의 수학적 모델링 굽힘 강성을 갖고 있는 외팔보의 굽힘 진동은 4 차 편미분 방정식으로 표현되고 양단에 서 각각 2 개씩의 경계치가 주어진다. 여기서는 이러한 경계치의 문제를 유도하고, 그 경계 조건에 대하여 외팔보의 진동을 논의한다. 3. 단순보 이론 단순보란 미소 입자의 수직 변위에 비해서 회전량이 무시할 만하고 전단력에 의한 변형이 굽...2025.04.26
-
초고속 인터넷의 역사와 원리에 대한 고찰 - 솔리톤의 분석과 발전 방향을 중심으로 - (version cire)2025.04.261. 솔리톤 전송기술(광 직접증폭) 대용량 장거리 광통신에 있어서 가장 문제가 되는 부분이 바로 광섬유에 광 펄스를 전송하는 경우 발생하는 신호의 왜곡이다. 광 펄스를 광섬유에 전송하게 되는 경우 전송거리에 따라서 신호왜곡이 점점 커지게 된다. 따라서 이를 해결하기 위한 신호왜곡을 최소화 할 수 있는 기술의 필요성이 대두된다. 이를 실현할 수 있는 기술이 바로 '광 솔리톤 전송(optical soliton transmission)'이다. 이는 이론적으로 솔리톤을 이용하면 광 펄스를 왜곡없이 전파할 수 있는 전송기술을 의미한다. 2....2025.04.26
-
고등 수학 세특/수행 -미적분 단원에서 생활 속 응용 사례 발표하기2024.12.311. 적분의 의료 및 우주항공 응용 적분은 의료계에서 심박출량 계산, 우주항공에서 로켓 발사 높이 계산 등에 활용됩니다. 적분은 복잡한 곡선으로 싸인 부분을 얇게 나누어 계산하는 방식을 사용하므로, CT 촬영 등 의학 기술에도 적용됩니다. 2. 미분의 건축학 응용 미분은 곡선의 접선을 이용해 안전한 도로 설계의 기반이 됩니다. 곡선 도로에서 직선 도로로 진입할 때, 곡선 도로의 접선 방향으로 진입해야 안전하므로, 이를 위해 미분 공식이 설계에 사용됩니다. 1. 적분의 의료 및 우주항공 응용 적분은 의료 및 우주항공 분야에서 매우 중...2024.12.31
-
라플라스 변환의 원리와 미분방정식 해법2025.11.161. 라플라스 변환의 정의 및 원리 라플라스 변환은 미분방정식을 대수방정식으로 변환시켜 손쉽게 풀 수 있는 변환법입니다. 미분과 적분, 초월함수의 개념이 포함된 복잡한 미분방정식을 인수분해와 근의 공식 등으로 간단히 해결할 수 있습니다. 라플라스 변환은 선형성을 띠며, 변환된 식을 역변환하여 원래 미분방정식의 해를 얻습니다. 복잡한 역변환 과정은 변환 표를 참고하여 직관적으로 수행합니다. 2. 미분방정식의 실생활 응용 미분방정식은 물리학의 운동 방정식, 열 방정식, 슈뢰딩거 방정식 등에 사용됩니다. 공학에서는 회로 이론, 제어 시스...2025.11.16
-
연속체 지배 방정식2025.05.061. 연속체 역학 연속체 역학은 물질을 연속적인 물체(연속체)로 가정하고 뉴턴의 제2법칙과 같은 기본 역학 법칙을 적용하여 유용한 정보를 해석하는 것입니다. 연속체는 물체를 더 작은 요소로 무한히 나누어도 각각의 요소가 전체 물질의 성질을 유지하는 물질을 의미합니다. 2. 뉴턴의 제2법칙 뉴턴의 제2법칙은 힘이 질량과 가속도의 곱이라는 단순한 의미가 아니라, 외력의 합(좌변)과 물체의 관성력(우변)이 평형을 이룬다는 의미입니다. 물질의 미소요소가 받는 관성력은 체적력, 표면력, 직선력으로 나타낼 수 있습니다. 3. 응력-변형률 관계...2025.05.06
-
개체군 역학과 수학적 모형2025.01.181. 개체군 역학 개체군 역학이란 생명체 군집의 개체 수가 증가하고, 먹이 공급의 한계를 초과하면서 폭락하는 똑같은 과정을 반복하는 순환과정을 생태학 내에서 다루는 분야이다. 2. 개체 수 증가에 대한 수학 모형 개체 수 증가에 대한 수학 모형을 최초로 다룬 사람은 1202년 토끼 문제를 제시한 레오나르도이다. 토끼 문제는 어린 토끼 한 쌍에서 시작해 한 철이 지난 후 어른 토끼가 되어 다시 어린 토끼 쌍을 낳는 과정을 반복한다. 어떤 토끼도 죽지 않는다고 가정했을 때 토끼 개체 수가 앞의 두 단계에서의 개체 수를 더한 피보나치 수...2025.01.18
