총 101개
-
핵심식물생리학 정리노트 Ch07 광합성 명반응2025.01.181. 광합성 명반응 광합성은 엽록체 가지는 세포들에서 발생하며, 틸라코이드 반응(광합성 명반응)과 탄소고정 반응(설탕 합성)으로 구성됩니다. 광합성 명반응에서는 물 분해, ATP 합성, NADPH 생성이 일어나며, 이를 위해 광계 I과 광계 II가 공간적으로 분리되어 있습니다. 광계 II에서 물이 산화되어 산소가 발생하고, 전자는 시토크롬 b6f 복합체와 광계 I을 거쳐 NADP+가 환원되어 NADPH가 생성됩니다. 이 과정에서 발생한 양성자 기울기는 ATP 합성효소를 통해 ATP 합성을 추진합니다. 2. 광합성 색소 광합성에 관여...2025.01.18
-
광합성 효율 측정 : 산소 발생량 비교2025.01.131. 광합성 녹색식물, 조류, 청록색 세균은 광합성을 통해 산소를 발생시킨다. 광계 II는 물로부터 전자를 제거하고 플라스토퀴논에 전달해 광계II 반응 중심에서의 빛 유도에 의한 전하 분리는 물로부터 전자의 흡열적 전달과 산소를 발생시키기 충분한 산화제인 P680+을 생산한다. 전자 하나의 P680+에 대한 연속적인 환원은 물이 전자 4개를 산화 과정을 통해 잃고 O2 1분자를 생산하는 과정과 짝지어진다. 2. 광합성 효율 고온 등의 환경 스트레스는 직간접적으로 광계 II와 같은 광합성 기구에 손상을 줄 수 있어 광합성량의 감소로 ...2025.01.13
-
동물과 식물의 글루코오스 대사를 통한 ATP 생산과 에너지 효율 비교2025.01.251. 동물의 글루코오스 대사 동물 세포에서 글루코오스 대사는 주로 세포질에서 시작되며, 해당과정을 거쳐 피루브산으로 분해된다. 피루브산은 미토콘드리아로 이동하여 아세틸-CoA로 변환되고, 크렙스 회로를 통해 NADH와 FADH2를 생성한다. 이 조효소들은 전자 전달계로 이동하여 대량의 ATP를 생산한다. 이론적으로 글루코오스 한 분자는 약 36~38분자의 ATP를 생성할 수 있다. 2. 식물의 글루코오스 대사 식물 세포에서도 글루코오스는 주요 에너지원으로 사용되며, 광합성과 세포호흡을 통해 에너지를 생산한다. 광합성에서 식물은 태양...2025.01.25
-
빛과 광합성 레포트2025.05.031. 광합성 광합성은 녹색식물이 빛에너지를 이용하여 CO2와 물로부터 유기화합물을 생성하는 과정이며 이 과정은 녹색식물에 의해 빛에너지가 화학에너지로 전환되는 것을 의미한다. 광합성은 높은 화학 에너지를 갖는 물질을 생성함과 동시에 산소를 방출함으로써, 생태계 내에서 매우 중요한 위치를 차지한다. 광합성은 명반응과 암반응으로 구분할 수 있으며, 명반응에서는 엽록소가 빛에너지를 흡수하여 화학에너지로 전환하고 물이 분해되며 산소가 방출된다. 암반응에서는 명반응에서 형성된 화학에너지를 이용하여 대기 중의 이산화탄소와 수소를 결합시켜 최종...2025.05.03
-
생명과학실험 광합성 측정 결과보고서2025.11.151. 광합성 빛 에너지를 이용하여 이산화탄소와 물로부터 탄수화물과 산소를 생산하며 화학에너지로 전환하는 과정이다. 식물체에서 일어나며 무기물로부터 유기물이 합성된다. 광합성으로부터 발생되는 산소는 지구 대기에서 산소 함량이 유지되는데 큰 기여를 하며 지구상의 모든 생명체에 필요한 유기 화합물과 대부분의 에너지를 공급한다. 빛에 의존하는 단계인 명반응과 빛에 의존하지 않는 단계인 암반응으로 나뉜다. 2. 명반응(광의존반응) 광합성 과정의 첫 번째 단계로 빛 에너지를 ATP와 환원된 전자운반체인 NADPH 형태의 화학에너지로 전환하는 ...2025.11.15
-
엽록체2025.01.161. 엽록체 광합성 엽록체 광합성은 엽록체라고 불리는 식물의 소기관에서 수생된다. 엽록체 내에는 빛을 효율적으로 흡수하기 위하여 chlorophyll a, chlorophyll b, carotenoid 등의 광합성 색소들을 효율적으로 배열하며 광계 1과 광계 2를 구성하고 있다. 광계 2의 반응 중심인 P680에서는 물을 광분해하여 산소를 방출하며 분리된 수소이온과 전자를 순환시켜 궁극적으로 ATP를 생산하며 전자를 광계1로 전달한다. 광계1에서는 높은 환원력을 가지는 NADPH를 생산한다. 광반응을 통해서 얻은 ATP와 NADPH...2025.01.16
-
광합성2025.05.111. 광합성 광합성은 식물이 빛에너지를 이용하여 이산화탄소와 물을 당과 유기물로 전환하고 산소를 방출하는 과정이다. 광합성은 명반응과 암반응의 두 단계로 이루어진다. 명반응은 엽록체의 틸라코이드막에서 일어나며, 빛에너지를 화학에너지로 전환하고 산소를 발생한다. 암반응은 엽록체의 스트로마에서 일어나며, 명반응에서 만들어진 고에너지 산물을 이용하여 포도당 분자를 조립한다. 광합성은 식물과 독립영양생물에게 필수적인 과정이며, 거의 모든 생명체에게 필요한 유기물질을 만들어낸다. 2. 엽록체 엽록체는 식물세포에 존재하는 세포소기관으로, 광합...2025.05.11
-
Essential Cell Biology 세포생물학 Chapter.14 시험대비 정리본2025.01.291. 에너지 생성 미토콘드리아와 엽록체에서 에너지가 생성되는 과정에 대해 설명하고 있습니다. 전자 전달 사슬을 통해 양성자 기울기가 형성되고, 이를 이용하여 ATP 합성효소가 ATP를 생성하는 chemiosmotic coupling 과정이 핵심입니다. 또한 미토콘드리아와 엽록체의 구조적 특징과 차이점도 다루고 있습니다. 2. ATP 합성 ATP 합성 과정에서 전자 전달 사슬을 통해 형성된 양성자 기울기가 ATP 합성효소를 통해 ATP 생성에 이용되는 원리를 설명하고 있습니다. 또한 ATP 합성 과정의 효율성과 열 발생에 대해서도 언...2025.01.29
-
광합성2025.01.171. 엽록체의 구조 엽록체는 광합성을 진행하는 데 필요한 많은 효소를 가지고 있을 뿐만 아니라 빛에너지를 화학 에너지로 전환할 수 있는 구조적 특징을 가지고 있다. 엽록체는 2중막으로 싸여 있고 복잡한 내막 구조를 갖는데, 내막은 납작한 주머니 모양의 틸라코이드를 구성하고 이것은 다시 겹겹이 포개져 그라나를 형성한다. 틸라코이드 막 표면에는 엽록소, 카로틴 등 빛을 흡수하는 색소가 모여서 광합성 단위인 광계를 이루고 있다. 2. 광합성 색소 엽록체에는 엽록소와 카로티노이드가 있다. 엽록소는 틸라코이드 막에 있는 단백질과 결합한 상태...2025.01.17
-
[일반생물학A+보고서] 광합성 색소 분리2025.04.281. 광합성 색소 광합성은 녹색 식물이 태양에서 얻은 빛 에너지로 이산화탄소와 물에서 유기화합물을 만드는 과정이다. 이렇게 합성된 유기화합물은 식물 내에서 단백질, 지질을 합성하고 생활에 필요한 화학 에너지원으로 작용하기 때문에 광합성 과정은 식물의 삶에 필수적이다. 이번 실험에서는 종이 크로마토그래피를 이용하여 식물의 광합성 색소를 분리하였다. 실험 결과에서 광합성 색소의 전개 양상에서 색소는 밀집된 형태로 전개된 것을 관찰할 수 있었다. 이는 인지질 이중막에 존재하여 소수성을 띠는 광합성 색소들이 전개액(톨루엔)과 소수성 상호작...2025.04.28
