총 823개
-
화학혁명과 원자론의 등장, 광학의 발전, 전자기학의 성립, 열 기관의 발전과 열역학의 성립, 19세기 기술의 발전2025.04.271. 화학혁명과 원자론의 등장 화학이란 자연과학의 한 분야로 물질의 성질과 조성, 구조와 그 변화를 다루는 학문이다. 고대부터 원자론을 주장하는 학자들이 있었으며, 이집트와 중국에서는 연금술과 연단술이 발전하였다. 18세기에는 플로지스톤설과 산소이론이 등장하며 화학 혁명이 일어났고, 19세기에는 돌턴의 원자설과 멘델레예프의 주기율표가 등장하였다. 20세기에는 화학 분야에서 비약적인 발전이 있었다. 2. 광학의 발전 빛에 대한 논쟁은 고대부터 존재했으며, 아리스토텔레스, 스넬, 데카르트, 뉴턴 등 많은 학자들이 빛의 본질과 속도, 굴...2025.04.27
-
광학의 발전역사: 중세부터 현대까지2025.11.171. 유리 가공 기술의 발전 유리는 광학 발전의 핵심 재료로, 약 3500년 전 메소포타미아와 이집트에서 초기 기술이 개발되었다. 고대 그리스에서 광학적 원리 연구가 시작되었고, 로마 제국 시대에 더 얇고 투명한 유리 제조 기술이 발전했다. 중세 유럽, 특히 베네치아에서 유리 공예 기술이 전통으로 계승되어 렌즈와 광학 장치 제작에 탁월한 기술을 발휘했다. 현대에는 광섬유 통신, 레이저, 현미경, 망원경 등 다양한 분야에서 응용되고 있다. 2. 알하젠과 광학의 기초 10세기 이슬람 과학자 알하젠은 '광학의 아버지'로 불리며 광학 분야...2025.11.17
-
[강원대학교 A+] 현미경의 종류와 구조 및 사용법 과제 레포트2025.05.111. 현미경의 종류 현미경에는 쌍안해부현미경, 광학현미경, 원심현미경, 형광현미경, 편광현미경, 전자현미경 등 다양한 종류가 있다. 각 현미경은 관찰 목적과 원리에 따라 특징이 다르다. 2. 현미경의 구조 광학현미경은 대물렌즈와 대안렌즈를 사용하여 상을 확대하며, 단안, 쌍안, 삼안 등의 형태가 있다. 전자현미경은 자기렌즈를 이용하며, 투과전자현미경과 주사전자현미경 등이 있다. 3. 현미경의 사용법 현미경을 사용할 때는 표본 준비, 광원 조절, 초점 맞추기 등의 과정이 필요하다. 각 현미경의 특성에 맞는 사용법을 익히는 것이 중요하...2025.05.11
-
현미경 보고서2025.05.081. 광학 현미경 광학 현미경은 대물렌즈와 접안렌즈를 통과한 가시광선에 의해 확대된 시료의 상을 관찰한다. 광원은 가시광선이며, 살아 있는 세포를 관찰할 수 있고 시료의 색깔 구분이 가능하다. 광학 현미경은 물체를 입체적으로 관찰할 수 없지만 최대 1,500배까지 확대가 가능하며, 해상력은 약 0.2 ㎛이다. 2. 위상차 현미경 위상차 현미경은 물질을 통과한 빛이 물질의 굴절률 차이에 의해 위상차를 갖게 되었을 때 이를 명암으로 바꾸어 관찰하는 현미경이다. 빛의 양을 크게 줄이지 않고 현미경의 해상도를 크게 낮추지 않고 현미경 관찰...2025.05.08
-
편광 실험 결과 보고서2025.05.011. 편광 편광은 빛의 진동 방향이 일정한 상태를 말합니다. 이번 실험에서는 편광자와 검광자의 각도에 따른 빛의 세기 변화를 관찰하여 Malus의 법칙을 확인하였습니다. 실험 결과 그래프는 이론적 그래프와 잘 일치하였으며, 이를 통해 Malus의 법칙이 성립함을 알 수 있었습니다. 2. Malus 법칙 Malus의 법칙은 편광자와 검광자 사이의 각도에 따른 빛의 세기 변화를 설명하는 법칙입니다. 이 법칙에 따르면 편광자와 검광자 사이의 각도가 θ일 때 빛의 세기는 cos^2(θ)에 비례합니다. 이번 실험에서는 이 법칙을 실험적으로 ...2025.05.01
-
은 나노입자 합성 및 광학 흡수 분석2025.11.121. 은 나노입자 합성 은 나노입자는 질산은, 브롬화칼륨, 구연산나트륨 등의 화학물질을 이용하여 합성된다. 합성 과정에서 질산은(AgNO3)이 주요 은 이온 공급원으로 사용되며, 브롬화칼륨과 구연산나트륨이 환원제 및 안정화제 역할을 한다. 이러한 화학적 방법을 통해 나노 크기의 은 입자를 생성할 수 있다. 2. 자외선-가시광선 분광법(UV-Vis Spectroscopy) 자외선-가시광선 분광법은 은 나노입자의 광학적 특성을 분석하는 주요 기술이다. 이 방법은 400-700nm 파장 범위에서 나노입자의 흡수 스펙트럼을 측정한다. 측정...2025.11.12
-
화학실험기법2_exp1. Synthesis and Optical Properties of CdSe Quantum Dots2025.01.211. 양자점(Quantum Dot) 양자점은 입자의 지름이 나노미터 단위 이하의 크기를 가지는 반도체 나노 입자를 말한다. 양자점은 입자의 크기별로 다양한 색을 나타내며 독특한 특성을 보여 최근 바이오 센서, 디스플레이 등의 여러 첨단 분야에 사용되고 있다. 입자의 크기가 작아질수록 파장은 짧아지고 더 높은 에너지를 가지며 색깔은 초록색-노란색에서 주황색-빨간색으로, 형광은 파란색에서 노란색으로 변한다. 이는 band gap과 관련이 있다. 2. Band Gap Band gap (Eg)는 HOMO-LUMO energy gap으로 알...2025.01.21
-
은 나노입자 합성 및 광특성 분석2025.11.161. 플라스몬(Plasmon) 플라스몬은 금속 내의 자유전자가 집단적으로 진동하는 유사입자입니다. 금속 입자에서는 표면에 국부적으로 존재하기 때문에 표면 플라스몬이라 부르며, 이는 금속의 광학적 특성을 결정하는 중요한 요소입니다. 플라스몬의 진동은 금속 나노입자의 크기와 형태에 따라 다양하게 변하며, 가시광 영역의 빛과 강하게 상호작용합니다. 2. 표면 플라스몬 공명(Surface Plasmon Resonance, SPR) 표면 플라스몬 공명은 평평한 표면에 입사한 빛에 의해 들뜬 상태가 된 표면 플라스몬의 상태를 의미합니다. 나노...2025.11.16
-
은나노입자의 합성 및 광학 흡수 분석2025.11.151. 은나노입자(Silver Nanoparticles) 합성 은나노입자는 나노 크기의 은 입자로, 화학적 합성 방법을 통해 제조됩니다. 입자의 크기는 일반적으로 50nm 정도이며, 합성 조건에 따라 크기가 조절될 수 있습니다. 은나노입자는 독특한 광학적 성질을 가지고 있어 다양한 응용 분야에서 활용되고 있습니다. 2. 광학 흡수 분석(Optical Absorption Analysis) 은나노입자의 광학 흡수 특성은 입자의 크기에 따라 달라집니다. 자외선-가시광선 분광법을 이용하여 흡수 파장을 측정하며, 입자 크기가 작을수록 흡수 파...2025.11.15
-
금나노입자(AuNPs)의 광학적 특성과 고찰2025.05.051. 나노기술과 금속 나노입자 나노기술은 과학의 트렌드 영역이 되었으며 기능적이고 조작된 나노입자의 개발로 큰 발전을 이루었다. 다양한 금속 나노 입자는 광범위한 의료 응용 분야에 널리 이용되고 있으며, 그 중 금 나노입자(AuNPs)가 매우 주목할 만하다. AuNPs는 여러 가지 고유한 기능적 특성과 쉬운 합성을 통해 광범위한 관심을 끌고 있다. 2. AuNPs의 광학적 특성 AuNPs의 고유한 특징(광학, 전자 및 물리화학적 특성)은 모양, 크기와 같은 나노입자의 특성을 변경할 수 있다. 표면 플라즈몬 공명(SPR)에 따라 Au...2025.05.05
