
총 60개
-
2023년 2학년 1학기 엑셀데이터분석 출석과제 중간과제 만점2025.01.251. A & B 지역의 연강수량 분석 두 지역의 연도별 강수량 자료에 대해 꺾은선형 차트를 이용하여 전체적인 경향을 설명하였다. 전반적으로 B지역보다 A지역의 연간 강수량이 많으며, 특히 1991~1993년, 2002년 및 2005~2006년에 A지역의 강수량이 B지역보다 많았음을 확인하였다. 또한 2018년부터는 두 지역간 강수량 차이가 거의 없는 것으로 나타났다. 각 지역의 강수량에 대한 기술통계량을 구해 비교한 결과, A지역이 평균 강수량, 최소값, 중앙값, 최대값 및 총 강수량 모두 B지역보다 높은 것으로 나타나 A지역의 강...2025.01.25
-
이산확률분포와 연속확률분포의 차이점2025.01.021. 이산확률분포 이산확률분포는 이산적인 값을 갖는 확률변수에 따른 분포에 대해 설명하는 확률분포입니다. 이산확률변수는 무한하지 않은 값(유한 값) 혹은 셀 수 있는 값을 가질 수 있으며, 이산확률변수가 가질 수 있는 값 모두의 집단은 카운트가 가능합니다. 이산확률변수가 가지는 값을 가질 확률은 확률질량함수(Probability mass function, PMF)를 이용하여 지정됩니다. 2. 연속확률분포 연속확률분포(Continuous Probability Distribution)는 연속확률 변수(continuous random v...2025.01.02
-
방통대 시뮬레이션 출수과제2025.01.241. 큐잉 시스템 시뮬레이션 이 프레젠테이션은 큐잉 시스템 시뮬레이션에 대한 내용을 다루고 있습니다. 큐잉 시스템은 고객이 도착하여 서비스를 받는 과정을 모델링한 것으로, 고객 도착 시간, 대기 시간, 서비스 시간 등의 요소를 고려합니다. 이 시뮬레이션은 C 프로그래밍 언어를 사용하여 구현되었으며, 고객 도착 확률, 서비스 시간 등의 변수를 설정하고 시뮬레이션을 수행하여 평균 대기 시간, 평균 대기열 길이 등의 결과를 도출합니다. 1. 큐잉 시스템 시뮬레이션 큐잉 시스템 시뮬레이션은 실제 시스템의 동작을 모방하여 시스템의 성능을 분...2025.01.24
-
한국방송통신대학교 통계데이터과학과 엑셀데이터분석 2024년 출석과제(만점)2025.01.251. 연도별 강수량 분석 A지역과 B지역의 1990년부터 2020년까지의 연강수량 자료를 엑셀과 KESS로 분석하여 두 지역의 연도별 강수량 추세 변화, 기술통계량 비교, 줄기-잎 그림과 상자그림 비교 등을 통해 두 지역의 강수량을 비교하였다. 분석 결과, A지역의 평균 및 총 강수량이 B지역보다 많았지만 연도별 편차가 컸다. 2. 이항분포와 포아송분포 자유투 성공률이 80%인 농구선수의 20번 자유투 성공 횟수와 4지선다형 문제 10문항에 대한 정답 수를 확률변수로 정의하고, 이항분포와 포아송분포를 이용하여 각각의 확률을 계산하였...2025.01.25
-
이산 분포의 효과적 활용법2025.01.241. 이산 분포 이산 분포는 데이터의 특성과 패턴을 이해하고 분석하는 데 중요한 도구로 활용된다. 이산 분포는 명확한 값으로 구분되는 사건이나 개수를 모델링하는 데 사용되며, 특히 사건이 발생할 횟수나 특정 카테고리로 구분되는 데이터를 다룰 때 유용하다. 이산 분포의 장점으로는 명확한 사건 수 모델링, 확률 질량 함수 사용, 베르누이 분포와 이항 분포의 활용 등이 있다. 2. 이산 분포의 효과적 활용법 이산 분포는 품질 관리, 마케팅 분석, 사건 발생 횟수 예측, 카테고리 데이터 분석, 첫 번째 성공까지의 실패 횟수 분석 등 다양한...2025.01.24
-
고려대학교 보건환경융합과학부 방사선안전분석 Lab 2 Statistics of Counting2025.01.131. Poisson distribution Poisson distribution은 시행 횟수는 아주 많으면서 성공 확률은 아주 낮은 경우 사용되는 확률 분포이며, N이 충분히 크고 p가 충분히 작아서 Np가 적당할 때 binomial distribution의 값을 근사적으로 구할 수 있습니다. Binomial distribution에서 Np=λ를 유지하면서 N→∞일 때, 그 분포는 Poisson distribution에 수렴합니다. Poisson distribution은 일반적으로 N≥20이고 p≤0.05이면 어느 정도 충분하고, ...2025.01.13
-
KL Divergence2025.05.101. KL Divergence KL Divergence는 두 확률 분포 사이의 차이를 측정하기 위해 사용되는 개념입니다. KL Divergence는 주로 정보 이론과 확률 이론에서 사용되며, 두 분포가 얼마나 다른지를 수치적으로 나타냅니다. KL Divergence는 다양한 분야에서 활용되며, 예를 들어 확률 분포 간의 차이를 측정하여 데이터 압축, 정보 검색, 통계 분석 등에 사용될 수 있습니다. 2. KL Divergence와 엔트로피 KL Divergence와 엔트로피는 서로 다른 개념이지만, 정보 이론과 확률론에서 밀접한 관...2025.05.10
-
표준정규분포 설명2025.01.171. 표준정규분포 표준정규분포는 확률과 통계에서 매우 중요한 개념이다. 표준정규분포는 평균이 0이고 분산이 1인 정규분포를 의미한다. 정규분포는 연속확률분포의 하나로, 자연현상이나 사회현상 등 다양한 분야에서 많이 사용된다. 표준정규분포는 이런 정규분포를 특별히 표준화한 것이다. 정규분포는 중심극한정리에 의해 설명되며, 표준정규분포는 대칭성을 가지고 있다. 표준정규분포의 확률밀도함수는 특정 값을 가질 확률을 계산하는 데 사용된다. 표준정규분포는 가설 검정, 신뢰구간 계산, 다양한 응용 분야 등에서 중요한 역할을 한다. 1. 표준정규...2025.01.17
-
푸아송 분포 유도 및 특징2025.01.141. 푸아송 분포 푸아송 분포는 거의 일어나지 않는 사건에 대한 분포로 적절합니다. n = 1000000, p = 0.00001 인 경우 이항분포로 계산하기 어려워 푸아송 분포를 사용할 수 있습니다. 푸아송 분포는 수많은 사건 중 특정한 사건이 발생할 확률이 매우 적은 경우에 사용되며, 예시로 단위 길이당 DNA 가닥의 돌연변이 수, 특정 지역에서 일어나는 교통사고 건수 등이 있습니다. 2. 푸아송 분포의 유도 푸아송 분포는 특정 지역에서 하루에 일어나는 교통사고의 평균 횟수 λ = 5일 때, 교통사고가 하루에 7번 일어날 확률을 ...2025.01.14
-
2023년 2학기 통계로세상읽기 출석수업 중간과제 리포트 30점 만점2025.01.251. 국가통계의 이용 국가통계(공식통계)는 개인, 기업, 정부 측면에서 다음과 같이 활용될 수 있다. 개인은 일상생활에서 합리적 의사결정을 위해 활용할 수 있고, 기업은 시장동향, 소비자 행동, 인구통계학적 정보 수집을 통해 전략 수립의 기본 자료로 활용할 수 있다. 국가는 국가 현황 파악, 정책 기획/수립/결정을 위한 기초자료로 활용하며, 법률 및 규제 개선, 예산 편성 등 다양한 분야에 활용된다. 2. 통계학의 역할 통계학은 1) 자료 수집, 2) 자료 요약/설명, 3) 자료를 토대로 과학적 결론 도출의 3가지 역할을 한다. 자...2025.01.25