총 4개
-
확률이론에 대하여 요약하여 정리하시오2025.01.181. 확률의 공준 및 확률분포 확률의 공준은 고전적 개념에 속하기 때문에 주관적 개념을 통해 확률을 부여하면 문제가 발생한다. 때문에, 확률을 정의하는 대신 세가지 조건을 만족하면 이를 곧 확률로 한다는 것이 '확률의 공준'이다. 확률분포란 실험이나 관찰에서 시행 가능한 사상으로 구성된 표본공간의 확률 변수를 확률 값으로 이어주는 함수이다. 2. 확률법칙에 대한 정리 덧셈법칙은 여러 개의 사상 중 적어도 하나의 사상이 발생할 확률을 뜻한다. 여확률의 법칙에서 여확률이란 사상 A의 여사건이라고 한다면 사상 A가 일어나지 않은 확률이라...2025.01.18
-
확률이론에 대하여 요약하여 정리하시오2025.05.011. 확률의 공준과 확률분포 확률의 공준은 모든 확률 이론의 기본적인 전제가 된다. 공준 1은 표본공간에 속하는 모든 원소의 확률값이 0과 1 사이라는 것이며, 공준 2는 표본공간 내 어떤 사상 E가 발생할 확률은 사상 E가 속하는 원소들의 확률을 모두 더한 것과 같다는 것이다. 공준 3은 표본공간이 발생할 확률은 1이며 어떤 사상도 발생하지 않을 확률은 0이라는 것이다. 2. 확률법칙 확률에는 덧셈 법칙, 여 확률의 법칙, 곱셈 법칙이 성립한다. 덧셈 법칙은 표본공간 내 여러 사상 중 적어도 하나 이상의 사상이 발생할 확률은 두 ...2025.05.01
-
확률이론에 대하여 요약하여 정리하시오2025.04.271. 확률의 공준 확률의 공준은 총 3가지로 정리할 수 있다. 공준1: 0<=P(E)<=1 (모든 확률의 값은 0이상 1이하), 공준2: P(S) = 1 (모든 확률의 합은 1), 공준3: 각 사건이 배반사건일 경우 합사건의 확률은 각각의 확률을 합한 것과 같음. 2. 확률분포 확률분포란 확률변수를 X라 하였을 때 X의 함수이다. 이 X는 특정한 값을 가지는데 그 값을 가질 확률들은 일종의 함수와 같이 특정 분포를 가지게 된다. 예를 들면 주사위를 던지는 실험에서 나올 수 있는 확률변수가 X이고, X의 확률은, P(x=1)=1/6이...2025.04.27
-
확률이론의 기초 개념과 응용2025.11.151. 확률의 정의 및 확률이론 확률은 어떤 사건이 일어날 가능성의 정도를 나타내는 척도로, 0과 1 사이의 실수로 표현된다. 확률이론은 실제로 발생하는 다양한 결과들의 기회와 가능성을 이해하기 위한 수학적 구조를 제공하며, 통계학, 머신러닝, 인공지능 등 다양한 분야에서 응용되고 있다. 2. 확률의 공준 확률의 공준은 별도의 증명 없이 옳다고 받아들이는 기본 가정으로 세 가지로 정리된다. 첫째, 표본공간의 모든 결과는 0 이상 1 이하의 확률값을 가진다. 둘째, 사건의 확률은 그에 속하는 원소들의 확률의 합이다. 셋째, 표본공간의 ...2025.11.15
