총 45개
-
세포간젖산염의 정의에 대해 서술하시오2025.01.151. 세포간젖산염의 생화학적 정의 세포간젖산염은 세포 대사에서 생성된 젖산염이 세포 간에 이동하여 사용되는 과정을 말한다. 젖산염은 젖산 분자가 수소 이온을 잃고 음전하를 띠게 된 상태로, 주로 근육 세포에서 생성된다. 젖산염은 피로를 유발하는 물질로 알려져 있지만, 동시에 중요한 에너지원으로 재활용될 수 있다. 2. 세포간젖산염의 형성과정 젖산염의 생성 메커니즘은 해당과정에서 시작된다. 해당과정은 포도당 한 분자가 두 분자의 피루브산으로 변환되며, 이 과정에서 ATP와 NADH가 생성된다. 산소가 부족한 상황에서는 피루브산이 젖산...2025.01.15
-
운동시 필요한 에너지는 주로 탄수화물, 지방, 단백질 순서로 이용되며, 탄수화물은2025.01.221. gluconeogenesis gluconeogenesis 과정은 해당작용의 역방향으로 일어나는 대사경로입니다. 해당과정이나 구연산회로의 탄소수가 3개 이상인 중간대사물을 공급하는 아미노산들은 당신생경로의 기질로 사용됩니다. 이들은 주로 α-케토글루타르산, 숙시닐 CoA, 푸마르산 혹은 옥살로 아세트산을 생성합니다. 단백질이 분해된 아미노산 중 리신과 류신을 제외한 나머지 아미노산은 혈당 유지에 사용할 수 있습니다. gluconeogenesis 과정이 이루어지기 위해서는 해당작용의 비 가역적은 세 반응, 헥소키나아지, 포스포프룩...2025.01.22
-
중앙대학교 동물영양학 기말예상문제2025.01.161. 혈중 glucose level 유지의 중요성 혈중 glucose level을 일정하게 유지하는 것이 중요한 이유에 대해 설명합니다. 고혈당과 저혈당의 차이를 설명합니다. 2. 지방 합성 용어 지방 합성과 관련된 용어를 설명합니다. 3. Gluconeogenesis 조절 효소 및 기질 Gluconeogenesis를 조절하는 4가지 주요 효소와 Gluconeogenesis의 기질이 되는 물질들을 설명합니다. 4. 아미노산의 대사 아미노산 중 Ketogenic 아미노산과 Glucogenic 아미노산의 종류를 설명하고, 반추동물과 사...2025.01.16
-
탄수화물을 분류하고 당류의 구조와 특징 고찰2025.01.171. 탄수화물의 정의 및 분류 탄수화물은 생명체의 주요 에너지원으로 작용하는 유기 화합물이다. 탄소, 수소, 산소의 원소로 이루어진 화합물로, 식물의 광합성 작용을 통해 생성된다. 탄수화물은 우리 몸의 다양한 기능에 필수적인 영양소로, 그 구조에 따라 단당류, 이당류, 다당류로 분류된다. 이러한 분류는 각기 다른 생리적 역할과 특징을 지닌다. 2. 단당류의 구조와 특징 단당류는 탄소 골격에 수산기와 하나의 알데히드기 또는 케톤기를 가진 구조를 지닌다. 이러한 구조적 특성은 단당류가 물에 잘 녹고, 체내에서 빠르게 흡수되어 에너지원으...2025.01.17
-
생화학 17단원 해당 과정 정리요약2025.04.301. Glycolysis Glycolysis는 탄소 6개를 가진 glucose를 탄소 3개를 가진 pyruvate 두 분자로 바꾸는 과정이다. Glycolysis는 크게 두 phase로 구성되어있는데, 초기에 glucose에 ATP 2분자를 써 phosphate를 가진 탄소 3개 화합물 2개로 바꾸는 에너지 투자기 phase와 이후 각 분자들이 추가로 phosphorylation 된 후 ATP 4분자를 생성하는 에너지 수확기 phase로 이루어져 있다. 2. Glycolysis Phases Glycolysis의 두 phase는 다음...2025.04.30
-
고급영양학 - 식품의 연소 에너지, 생리적 에너지, 에너지 밀도, 활동수준과 체중 변화에 따른 에너지요구량2025.05.161. 식품의 연소 에너지 식품의 연소 에너지는 사람을 포함한 동물이 섭취하는 음식이나 사료, 식품 등에 포함되어있는 에너지의 양을 의미합니다. 식품은 주로 단백질, 탄수화물, 지방으로 이루어져있으며 사람(동물)은 이와 같은 영양성분을 섭취함에 따라 에너지를 낼 수 있습니다. 식품에 포함된 탄수화물, 단백질, 지방의 비율에 따라 에너지가가 달라지며, 각 함유량에 따라 물리적인 연소치에 소화흡수율을 곱하고 최종적으로 그 값을 다시 더하면 식품의 연소 에너지가가 나옵니다. 식품의 연소 에너지가는 칼로리(kcal)로 표기됩니다. 2. 생리...2025.05.16
-
운동과 영양에 대한 이해2024.12.311. 운동 시 에너지 공급원의 변화 운동 시 시간이 경과함에 따라 주된 에너지 공급원이 변화한다. 초기에는 ATP-PC 시스템과 젖산 시스템을 통해 탄수화물이 주요 에너지원이 되지만, 시간이 지나면서 유산소 시스템을 통해 지방이 주요 에너지원으로 전환된다. 이는 근육 내 글리코겐 저장량과 고갈 속도에 따라 달라진다. 2. 근육의 혈당 조절 능력 근육에는 간과 달리 글리코겐을 분해하는 효소인 포스파타제가 없기 때문에 혈당 조절 능력이 떨어진다. 근육 내 글리코겐은 근수축에 필요한 에너지로만 사용될 뿐, 혈당 유지를 위해 분해되지 않는...2024.12.31
-
세포생물학 1 고려대학교2025.01.161. 세포생물학 세포생물학은 세포의 구조와 기능, 세포 내 대사 과정, 세포 간 상호작용 등을 연구하는 학문입니다. 이 프레젠테이션에서는 세포 내 에너지 대사, 단백질 합성, 세포 소기관의 기능 등 세포생물학의 주요 주제들을 다루고 있습니다. 세포 내 화학 반응과 에너지 생산 과정, 유전 정보의 발현과 단백질 합성 과정 등이 자세히 설명되어 있습니다. 1. 세포생물학 세포생물학은 생명체의 기본 단위인 세포의 구조와 기능, 그리고 세포 내에서 일어나는 다양한 생명 현상을 연구하는 학문입니다. 세포생물학은 생명체의 이해와 의학, 생명공...2025.01.16
-
양배추 호흡 관찰2025.05.041. 세포호흡 실험을 통해 살아있는 세포 내 에너지 대사를 이해하였다. 양배추의 세포호흡 과정에서 메틸렌 블루가 환원되어 용액의 색깔 변화가 관찰되었다. 익힌 양배추에서는 세포호흡이 일어나지 않아 색깔 변화가 나타나지 않았다. 실험 과정에서 발생할 수 있는 오차 요인들을 고려하여 실험 방법을 개선할 수 있었다. 2. 메틸렌 블루 환원 메틸렌 블루 용액을 희석하여 사용한 이유는 메틸렌 블루 분자의 농도가 높으면 환원되어도 여전히 진한 푸른색을 띠기 때문이다. 희석하면 색깔 변화가 더 잘 관찰될 수 있다. 또한 물중탕 온도는 세포를 완...2025.05.04
-
식품생화학 지방산 분해, 생합성 및 지단백 대사2025.05.071. 지방산 분해과정 지방산 분해과정에는 지방지방의 분해, 지방산의 흡수 및 미토콘드리아로의 이동, 지방산 β-산화, 케톤체의 형성 등이 포함됩니다. 지방산 분해를 통해 다량의 전자수용체와 아세틸 CoA가 생성되어 에너지 대사에 중요한 역할을 합니다. 2. 지방산 생합성 지방산 생합성은 아세틸 CoA를 전구물질로 하여 미토콘드리아 아세틸 CoA를 세포질로 수송하는 시트르산 셔틀, 말로닐 CoA의 합성, 지방산 합성 등의 과정을 거칩니다. 또한 불포화 지방산의 합성과 필수 지방산, 에탄올 섭취와 지방간 생성, 트라이아실글리세롤 합성 ...2025.05.07
