
총 87개
-
인공지능 머신러닝 지도학습, 비지도학습, 강화학습의 실사례2025.01.161. 지도학습(Supervised Learning) 지도학습은 입력한 데이터와 출력한 데이터를 각각 공급하여 작동하는 유형으로, 훈련을 통해 알고리즘이 입력값을 바탕으로 내용을 처리하고 모델을 수정하며 원하는 출력에 근접하는 결과물을 산출하게 됩니다. 이는 분류와 예측 문제에 유용한 학습 방법으로, 스팸 이메일 탐지 기능은 대표적인 사례입니다. 해당 모델은 '스팸 메일'과 '비스팸 메일'로 레이블이 지정된 이메일 데이터 집합을 통해 학습되며, 키워드, 발신자 정보, 이메일 구조 및 내용과 같은 특징을 사용하여 새로운 수신 이메일을 ...2025.01.16
-
세종대학교 소프트웨어 특강 과제12025.05.101. Linear Regression 주어진 데이터에 대해 가장 잘 맞는 선형 회귀 모델을 찾았습니다. Gradient Descent 알고리즘을 사용하여 모델의 최적 매개변수를 구했으며, 이를 통해 입력 x=15에 대한 y 값을 예측할 수 있었습니다. 또한 회귀선을 데이터 포인트와 함께 시각화하였습니다. 2. Logistic Regression 두 개의 입력 변수(Petal_Length, Petal_Width)를 사용하여 Iris versicolor와 Iris virginica 두 클래스를 구분하는 로지스틱 회귀 모델을 구현하였습니...2025.05.10
-
자율주행자는 어떻게 학습하고 운전할 수 있는지 기술하시오2025.01.111. 자율주행차의 개념과 중요성 자율주행차는 미래의 교통 시스템의 핵심 기술 중 하나이며, 인간의 운전 오류로 인한 교통사고를 줄이고, 교통 체증을 해소하며, 환경문제를 해결하는 데 큰 역할을 할 것으로 기대된다. 이러한 기술의 발전은 우리 사회에 긍정적인 영향을 미칠 것이며, 자율주행차의 개념과 중요성에 대한 이해와 함께 적극적인 지원이 필요하다. 2. 자율주행차의 학습 방법 자율주행차의 학습 방법에는 머신 러닝과 딥 러닝의 활용, 데이터 수집과 분석이 중요한 역할을 한다. 이러한 기술들은 자율주행차가 환경을 인식하고 판단하는 능...2025.01.11
-
(A0) 서울대학교 머신러닝을 위한 기초 수학 및 프로그래밍 실습 과제, 소논문2025.01.181. 머신러닝 기초 수학 및 프로그래밍 실습 이 자료는 서울대학교에서 진행된 머신러닝 수업의 과제와 소논문에 대한 내용입니다. 과제 7-1에서는 최종 프로젝트에 대한 1페이지 제안서 작성이 요구되었습니다. 제안서에는 예측, 분류, 값 예측 등의 아이디어와 데이터 수집 및 실현 계획이 포함되어야 합니다. 과제 7-2에서는 팬데믹 이후 여행하고 싶은 두 도시를 선택하고 이들 간의 거리를 계산하는 프로그래밍 과제가 주어졌습니다. 1. 머신러닝 기초 수학 및 프로그래밍 실습 머신러닝은 데이터 기반의 알고리즘을 통해 문제를 해결하는 기술로,...2025.01.18
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
-
데이터 사이언티스트 - 21세기 최고의 직업2025.01.191. 데이터 사이언티스트의 정의와 필요성 21세기 들어 정보와 데이터의 중요성이 급격히 증가했으며, 기업과 정부, 연구기관 등 다양한 분야에서 데이터의 수집과 분석을 통해 새로운 가치를 창출하고 있다. 이 과정에서 핵심적인 역할을 하는 직업이 바로 데이터 사이언티스트이다. 데이터 사이언티스트는 통계학자와 데이터 엔지니어와 구분되는 독특한 역할을 한다. 2. 데이터 사이언티스트의 매력과 인기도 데이터 사이언티스트 직업의 매력은 높은 수요와 보상, 다양한 산업에서의 활용, 기술 발전에 따른 지속적인 학습 기회, 사회적 가치 창출 등 다...2025.01.19
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
숨겨진 물리적 변수 발견을 위한 머신 러닝 알고리즘2025.01.161. 머신 러닝 알고리즘 최근 과학의 발전이 점차 복잡한 방향으로 나아가면서, 이를 이해하고 분석하기 위한 방법론에 대한 필요성이 증가하고 있다. 특히 물리학에서는 복잡한 물리적 현상을 설명하기 위해 다양한 변수들을 식별하고 이들 간의 관계를 정의하는 과정이 요구되는데, 이는 굉장히 복잡하고 어려운 작업이다. 이러한 배경 속에서 컬럼비아 대학의 연구진이 개발한 머신 러닝 알고리즘은 동작 관련 영상만을 보고도 관련된 물리적 변수를 발견하고 산출하는 능력을 갖추고 있다. 2. 물리적 변수 발견 이 알고리즘이 뛰어난 점은, 알려진 시스템...2025.01.16
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10