총 38개
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25
-
빅데이터의 기술 요건 네 단계에 대해 설명하세요2025.01.181. 데이터 수집 이 단계는 기업 내부와 외부에서 발생하는 엄청난 양의 데이터를 모으는 과정을 말한다. 이 과정에서는 다양한 데이터 소스로부터 필요한 정보를 수동이나 자동으로 수집하는 기술이 필요하다. 예를 들어, 기업 내부 데이터는 ETL(Extraction, Transformation, Load) 솔루션을 통해 추출, 변환, 적재하는 방식으로 확보할 수 있으며, EII(Enterprise Information Integration)를 활용하여 데이터를 통합하고 분석할 수 있다. 외부 데이터의 경우, 웹 크롤링 엔진을 사용하여 인...2025.01.18
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
Big Data Data Mining 데이터 마이닝2025.01.121. Data Mining 데이터 마이닝은 방대한 데이터 속에서 유용한 상관관계를 발견하고 추출하여 의사결정에 이용하는 과정입니다. 정보기술의 발달과 비즈니스 요구에 의해 등장했으며, 과열된 기업경쟁과 다양한 고객 요구에 효과적이고 빠른 기업경쟁력을 제공합니다. 데이터 마이닝 이전에는 한정된 자료와 전공 서적 중심의 연역적 방법을 사용했지만, 데이터 마이닝 시대에는 대용량 자료와 실무 중심의 귀납적 방법을 사용합니다. 2. Data Mining 기법 데이터 마이닝 기법에는 의사결정나무, 신경망 네트워크, K-평균 군집화, OLAP ...2025.01.12
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
데이터 마이닝의 정의와 활용 사례2025.01.021. 데이터 마이닝의 이해 데이터 마이닝은 대량의 데이터 세트에서 가치 있는 정보와 통찰력을 추출하는 프로세스입니다. 여기에는 통계 분석, 기계 학습, 패턴 인식 등의 기술을 사용하여 데이터 내 숨겨진 패턴, 상관 관계 및 트렌드를 식별하는 것이 포함됩니다. 데이터 마이닝 프로세스에는 데이터 수집, 정리 및 전처리, 탐색, 모델 구축, 평가, 배치 등의 단계가 포함됩니다. 2. 데이터 마이닝의 응용 데이터 마이닝의 주요 애플리케이션 중 하나는 예측 분석입니다. 이를 통해 기업은 고객 수요를 예측하고 재고를 효율적으로 관리할 수 있습...2025.01.02
-
전산개론_빅데이터의 정의와 특징 그리고 분석기술을 조사하여 제출하시오.2025.05.021. 4차 산업혁명 4차 산업혁명의 특징은 초연결성, 융합, 초지능, 노동력 위기, 심각한 불균형과 양극화 현상 등 5가지로 분류할 수 있다. 이러한 4차 산업혁명의 배경 속에서 빅데이터의 개념, 특징, 분석기술이 등장하게 되었다. 2. 빅데이터의 개념 빅데이터는 많은 양의 데이터로, 속도가 빠르고 다양한 종류의 데이터를 포함하고 있다. 기존의 관리 방법이나 분석 체계로는 처리하기 어려운 방대한 양의 데이터 집합을 저장, 수집, 분석, 관리, 시각화하는 정보통신 기술 분야라고 볼 수 있다. 3. 빅데이터의 특징 빅데이터의 대표적인 ...2025.05.02
-
스포티파이 데이터 마이닝2025.01.131. 음악 선호에 미치는 영향 요인 분석 이 프레젠테이션은 K-POP 시장의 지속적인 성장에 따른 글로벌 전략 수립을 위해 스포티파이 데이터를 활용하여 음악 선호에 영향을 미치는 요인을 분석하고 있습니다. 데이터 수집, 전처리, 상관관계 분석, 회귀 분석 등을 통해 아티스트 인기도, 댄스성, 에너지 등의 요인이 트랙 인기도에 미치는 영향을 확인하고 있습니다. 이를 바탕으로 아티스트 협업, 브랜드 페이지 운영 등의 마케팅 전략을 제안하고 있습니다. 1. 음악 선호에 미치는 영향 요인 분석 음악 선호에는 다양한 요인들이 영향을 미칩니다...2025.01.13
-
30점 만점 방통대 데이터마이닝 2024-1학기2025.01.261. 데이터마이닝 방법론 데이터마이닝의 방법은 크게 모수적 모형 접근 방법과 알고리즘 접근 방법으로 나뉜다. 모수적 모형 접근법은 기존 데이터를 기반으로 모수를 추정하는 방법이며, 알고리즘 접근방법은 정해진 알고리즘에 따라 데이터를 학습하는 방법이다. 각각의 장단점이 있으며, 상황에 따라 적절한 방법을 선택해야 한다. 2. 모수적 모형 접근법 모수적 모형 접근법은 단순 선형 회귀분석, 로지스틱 회귀모형 등이 해당된다. 기본 모형 식이 존재하며, 모수를 추정하는 방식으로 결과가 복잡하지 않고 해석이 용이하다. 그러나 데이터가 가정한 ...2025.01.26
-
빅데이터의 의미와 정보기술2025.04.251. 빅데이터의 의미 빅데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 빅데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅데이터 분석 기술 빅데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술들을 통해 빅데이...2025.04.25
