
총 38개
-
4차 산업혁명을 선도할 주요 기술에 대한 조사2025.04.261. 인공지능의 발전 인공지능은 기계나 알고리즘, 시스템이 인간의 행동과 지능을 모방하는 능력을 가진 기술이다. 인공지능은 인간의 지능을 시뮬레이션하고 확장하며, 이런 기술이나 방법, 응용프로그램을 연구하고 개발하는 새로운 기술 과학이다. 인공지능은 탄생 이후 이론과 기술이 나날이 발전되고 있으며, 응용 분야도 확대되고 있다. 미래의 인공지능 기술은 다양한 과학 기술 제품에 인류 지혜의 지혜를 담당할 것이라고 예상할 수 있다. 2. 인공지능의 활용 인공지능은 이미 점차 우리 생활에 들어와 다양한 분야에 응용되고 있다. 자율주행차, ...2025.04.26
-
빅데이터 리포트2025.01.191. 빅데이터 빅데이터는 기존의 데이터에 비해 방대한 양의 정형 또는 비정형 데이터로, 대량의 데이터와 복잡성이 큰 데이터를 의미한다. 3V(Volume, Velocity, Variety)와 5V(Volume, Velocity, Variety, Veracity, Value)로 특징지어진다. 빅데이터 분석은 필요한 정보를 수집하는 것에서 가능한 많은 데이터와 숨은 정보를 찾아내는 방식으로 변화하고 있으며, 표본조사에서 전수조사로, 질에서 양으로, 상관관계에서 인과관계로 변화하고 있다. 데이터마이닝은 많은 데이터에서 유용한 정보를 발견...2025.01.19
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
특허와 기술개발 선행기술 조사 보고서 과제(인공지능 데이터마이닝)2025.01.061. 데이터 마이닝 데이터 마이닝은 대량의 데이터로부터 새롭고 의미 있는 정보를 추출하고 이를 의사결정에 활용하는 기술입니다. 최근 데이터의 양과 다양성이 증가함에 따라 데이터 마이닝 기술이 각광받고 있습니다. 연관 규칙 분석, 클러스터링 등 다양한 데이터 마이닝 기술이 존재하며, 소매업체의 상품 진열, 광고 추천 등 다양한 분야에서 활용되고 있습니다. 또한 웹 사용 마이닝을 통해 사용자 행동 패턴을 분석하고 개인화된 서비스를 제공할 수 있습니다. 2. 실시간 데이터 마이닝 최근 스마트 단말기의 보급으로 인해 로그 데이터의 양이 증...2025.01.06
-
미래사회와 소프트웨어 과제2025.01.291. 데이터 분석의 역사 데이터는 인류 역사 속에서 오래전부터 분석되어 왔다. 이집트의 토지조사, 바빌로니아의 진흙판 숫자, 중국의 인구조사, 그리스의 조세조사, 민수기의 인구조사, 로마의 생명표 등 다양한 데이터 분석 사례가 있었다. 우리나라에서도 조선시대에 호적 제도를 통해 인구통계를 내었다. 이처럼 통계학은 과거부터 국가 통치를 위해 사용되어 왔다. 2. 데이터의 진화 산업혁명 이후 데이터는 국가 데이터에서 민간 데이터로 진화했다. 데이터 저장 기술의 발전으로 소셜 네트워크 서비스 데이터가 등장했고, 데이터베이스 시대가 열렸다...2025.01.29
-
시계열 데이터 분석 기법의 장단점 및 예시2025.01.261. ARIMA 모델 ARIMA 모델은 시계열 데이터의 선형적 관계를 잘 포착하여 비교적 간단한 수식으로 데이터 예측이 가능하다는 장점이 있습니다. 주식 가격 예측, 경제 지표 예측, 수요 예측 등에서 유용하게 사용될 수 있습니다. 그러나 비선형적이거나 계절적 패턴을 가진 데이터에는 적합하지 않으며, 모델의 설정 및 파라미터 최적화가 복잡할 수 있다는 단점이 있습니다. 2. 지수평활법 지수평활법은 데이터의 최신 변화에 빠르게 반응하여 짧은 기간의 예측에 특히 유리합니다. 이 방법은 비교적 간단하고 직관적이며, 데이터가 급격히 변동할...2025.01.26
-
빅데이터의 기술 요건 네 단계에 대해 설명하세요2025.01.121. 빅데이터 기술 요건 빅데이터의 기술 요건은 빅데이터를 수집, 저장, 처리, 분석하는 데 필요한 기술적인 요구사항을 의미합니다. 빅데이터의 규모와 다양성이 증가함에 따라 이러한 요건은 더욱 중요해지고 있습니다. 빅데이터 기술 요건은 크게 네 가지 단계로 나뉘며, 각 단계별로 필요한 기술이 다양하게 요구됩니다. 2. 데이터 수집 단계 데이터 수집 단계에서는 빅데이터를 생성하고 발생하는 원천 데이터를 수집하는 과정을 의미합니다. 이 과정에서 필요한 기술은 데이터 수집과 전송, 그리고 신속한 처리가 가능한 시스템을 구축하는 것입니다....2025.01.12
-
데이터 마이닝의 기술적 동인2025.01.251. 데이터 마이닝의 기술적 동인 데이터 마이닝의 기술적 동인은 컴퓨터 기술의 발전, 인터넷과 월드 와이드 웹의 등장, 하드웨어 기술의 발전, 소프트웨어 기술의 발전, 인공지능과 기계 학습의 발전, 빅데이터의 등장, 데이터의 중요성에 대한 인식 증가, 개인정보 보호와 윤리적 문제에 대한 관심 증가, 다양한 응용 분야의 확장 등으로 요약될 수 있다. 이러한 동인들이 결합되어 데이터 마이닝 기술은 지속적으로 발전하고 있으며, 앞으로도 그 중요성과 활용 범위는 더욱 확대될 것으로 예상된다. 1. 데이터 마이닝의 기술적 동인 데이터 마이닝...2025.01.25
-
빅데이터의 기술 요건 네 단계에 대해 설명하세요2025.01.181. 데이터 수집 이 단계는 기업 내부와 외부에서 발생하는 엄청난 양의 데이터를 모으는 과정을 말한다. 이 과정에서는 다양한 데이터 소스로부터 필요한 정보를 수동이나 자동으로 수집하는 기술이 필요하다. 예를 들어, 기업 내부 데이터는 ETL(Extraction, Transformation, Load) 솔루션을 통해 추출, 변환, 적재하는 방식으로 확보할 수 있으며, EII(Enterprise Information Integration)를 활용하여 데이터를 통합하고 분석할 수 있다. 외부 데이터의 경우, 웹 크롤링 엔진을 사용하여 인...2025.01.18
-
데이터 마이닝, 출석수업 과제물 (2023 1학기, 30점 만점)2025.01.251. 데이터 마이닝 기법 데이터 마이닝은 데이터에서 의미를 추출하는 기법을 의미하며, 모수적 모형 접근 방법과 알고리즘 접근 방법이 모두 활용될 수 있다. 모수적 모형 접근법은 모형을 설정하고 모수를 추정하는 방식이며, 알고리즘 접근법은 정해진 알고리즘으로 계산하여 결과를 분석하는 방식이다. 각각의 장단점이 있으며, SNS 텍스트 데이터 분석에 활용할 수 있다. 2. 로지스틱 회귀모형 적합 와인 품질 데이터에 로지스틱 회귀모형을 적합하였다. alcohol 변수만 사용한 모형, sulphates 변수만 사용한 모형, 그리고 유의미한 ...2025.01.25