총 97개
-
인공지능을 활용한 금융사기 예방 솔루션2025.01.041. 인공지능을 활용한 금융사기 예방 금융사기는 현대 사회에서 심각한 경제 범죄이며, 특히 보이스피싱이 기승을 부리고 있습니다. 보이스피싱 피해금의 환급률이 낮고 피해 회복이 어려워 예방이 중요합니다. 인공지능 기반의 솔루션을 개발하면 금융거래 데이터를 실시간으로 분석하여 이상 거래를 탐지하고 사전에 예방할 수 있습니다. 인공지능은 기계학습을 통해 정확도를 높이며, 실시간 경고와 대응으로 금융사기 피해를 막을 수 있습니다. 이를 통해 금융기관의 고객 신뢰도 향상에도 기여할 수 있습니다. 1. 인공지능을 활용한 금융사기 예방 인공지능...2025.01.04
-
방송대_대학수학의이해_중간과제물_2023학년도_2학기2025.01.251. CAS와 직접연산 CAS와 직접연산을 모두 경험해본 입장에서 수학 학습에 컴퓨터 소프트웨어를 이용하는 것을 찬성한다. 기계학습에 필요한 수학을 공부하기 위해 '기계처럼 기계학습하기'라는 스터디에 참여했으며, 이론 공부와 연습문제 풀이를 진행했다. 2. 기계학습 스터디 기계학습 스터디의 과제인 2장 연습문제를 풀기 위해 2023년 9월 1일 python의 sympy모듈을 사용했다. 연습문제 13번은 f(x)에서 난수를 생성하여 초깃값 X0=2.1을 얻었을 때 theta = theta -p*g를 연속적으로 사용하여 얻는 점 x1,...2025.01.25
-
언어 변수와 헤지, 퍼지 집합 연산, 포함관계에 대해 서술하시오2025.01.271. 언어 변수 언어 변수는 수치 대신 언어적 표현을 사용하여 정보를 나타내는 방식입니다. 이는 모호하거나 불확실한 상황을 다루는 데 적합한 도구로, 사람들의 일상적인 의사소통 방식과 유사합니다. 언어 변수의 주요 특징은 모호성 및 가변성 반영, 맥락에 따른 유연한 해석 가능, 사람의 사고방식과 밀접한 연관성, 수학적 모델링 도구로의 활용 등입니다. 2. 헤지 연산 헤지 연산은 언어 변수의 의미를 조정하여 정보를 더 명확하고 세밀하게 전달하는 데 사용되는 기법입니다. 이를 통해 언어 변수의 강도나 범위를 조절하여 모호한 상황에서도 ...2025.01.27
-
인공지능 특징 및 관련 산업군 정리2025.05.011. 인공지능의 역사 인공지능은 1956년 미국 다트머스 컨퍼런스에서 처음 등장했으며, 이후 논리학, 심볼릭 AI, 전문가 시스템, 기계 학습 등 다양한 분야에서 발전해왔습니다. 1980년대 중반에는 전문가 시스템과 인공신경망 분야에서 발전이 있었고, 1990년대에는 기계 학습 기술이 대중화되면서 인공지능 연구에 다시 활기가 돌아왔습니다. 2000년대에는 대량의 데이터 처리와 딥러닝 기술의 발전으로 인공지능 기술이 급속히 발전하고 있으며, 현재 이미지 인식, 음성 인식, 자연어 처리 등 다양한 분야에서 활용되고 있습니다. 2. 인공...2025.05.01
-
데이터 모델링에 관한 소고2025.05.101. 데이터 모델링 데이터 모델링은 예를 들어 제조 공정에서 발생하는 다양한 변수와 상호작용을 이해하고 표현하기 위한 기술입니다. 이를 통해 우리는 불량 발생에 영향을 미치는 주요 변수들을 식별하고, 이러한 변수들 간의 관계를 파악할 수 있습니다. 데이터 모델링을 통해 불량 발생 원인을 정확하게 분석하고, 불량율을 예측할 수 있는 모델을 구축할 수 있습니다. 2. 문제의 단순화: 단일 변수 표현 다변수 데이터를 예를 들어, 면적, 두께 등과 같은 기본적인 물리량으로 하나의 값으로 표현함으로써, 다양한 변수 간의 복잡한 관계를 단순화...2025.05.10
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
[생산관리, SCM] 수요예측_비즈니스 성장과 효율성을 위한 전략적 도구2025.05.081. 수요예측의 개념과 중요성 수요예측은 기업과 조직이 제품 또는 서비스의 수요를 정확하게 예측하는 과정으로, 효율적인 운영 및 공급망 관리를 위한 중요한 요소입니다. 수요예측은 기업이 생산 계획, 자재 관리, 재고 관리, 주문 및 공급 계획 등을 최적화하는 데 필수적인 정보를 제공합니다. 정확한 수요예측은 기업의 비용 절감과 생산력 향상을 도모하며, 고객 만족도와 경쟁력을 향상시킬 수 있습니다. 2. 수요예측 기법 종류 수요예측 기법은 기초 수요예측 기법, 통계적 수요예측 기법, 기계학습 기반 수요예측 기법으로 구분됩니다. 기초 ...2025.05.08
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.121. 인공지능이란 인공지능이란 인간 지능이 필요한 업무 등을 정상적으로 수행할 수 있는 컴퓨터 시스템의 이론과 개발, 그리고 시각 인식, 음성 인식, 의사 결정, 언어 번역 등을 수행하는 어플리케이션이나 능력을 의미한다. 2. 인공지능의 분류 인공지능은 강한 인공지능과 약한 인공지능으로 구분된다. 강한 인공지능은 사람과 같이 자유로운 사고와 감정표현 등을 하는 것이 가능하고 자아의식을 가지고 있는 인공지능을 의미하며, 약한 인공지능은 자의식이 없는 머신러닝 기법으로 만들어진 전문가 시스템을 의미한다. 3. 기계학습 기계학습은 컴퓨터...2025.05.12
