
총 89개
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
인공지능의 개념 및 원리와 일상생활 및 교육분야에서의 활용사례2025.01.251. 인공지능의 개념과 원리 인공지능은 기계가 인간의 지능적인 행동을 모방하는 것을 목표로 하는 기술로, 기계학습, 패턴인식, 자연어 처리, 인공신경망 등의 다양한 원리와 기술이 활용된다. 이를 통해 컴퓨터 시스템이 사람의 학습, 추론, 문제 해결 등과 같은 지능적인 능력을 갖출 수 있다. 2. 일상생활에서의 인공지능 활용사례 일상생활에서 인공지능 기술은 음성 비서, 추천 시스템, 스마트 홈 기기 등을 통해 활용되고 있다. 이를 통해 사용자의 편의성과 효율성이 증진되고 있지만, 개인정보 보호와 보안 등의 이슈에 대한 고려가 필요하다...2025.01.25
-
Generative AI를 사용하는 방식 - Fine Tunning 및 Prompt Engineering2025.01.141. 생성형 AI의 기본 개념 생성형 AI는 기계 학습의 발전을 통해 새로운 정보와 아이디어를 창조해내는 인공지능의 형태를 말합니다. 이는 단순히 데이터를 처리하고 분석하는 것을 넘어, 다양한 패턴과 연관성을 학습하여 새롭고 창의적인 결과물을 만들어냅니다. 생성형 AI는 예술, 디자인, 문학 등 다양한 창조적 분야에서 새로운 가능성을 열어주고 있습니다. 2. 생성형 AI의 주요 용도 생성형 AI는 예술과 엔터테인먼트 산업에서 두각을 나타내며, 새로운 창작의 지평을 열고 있습니다. 예술 분야에서는 독창적인 음악이나 미술 작품을 만들어...2025.01.14
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사2025.01.241. 인공지능의 개념 인공지능의 정의는 범위에 따라 다양하지만, 포괄적인 범위로 인공지능을 정의 내리자면 인공지능이란 어떠한 문제를 스스로 해결할 수 있는 능력을 갖춘 시스템을 말한다. 즉, 인간의 지적 능력을 기계나 컴퓨터를 통해 구현하는 기술이다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 나눌 수 있다. 약한 인공지능은 특정한 분야나 목표만을 해결할 수 있는 인공지능을 뜻하며, 강한 인공지능은 다양한 목표를 해결할 수 있는 인공지능이다. 2. 인공지능 기술 - 기계학습 기계학습은 알고리즘을 연구하고 활용하는 기술로 엄청...2025.01.24
-
인공지능의 역사와 현 수준2025.05.011. 인공지능의 역사 인공지능(AI)의 역사는 1940년대부터 시작되었으며, 주요 이정표로는 앨런 튜링의 튜링 테스트 제안, 1950-60년대의 초기 AI 프로그램 개발, 1970-80년대의 전문가 시스템 개발, 1980-90년대의 신경망 및 기계 학습 알고리즘 개발, 2000년대의 딥러닝 알고리즘 개발 등이 있다. 최근 몇 년 동안 AI는 자율주행 차량, 로봇 공학, 가상 비서, 개인화된 의학 등 다양한 분야에서 빠르게 발전하고 있다. 2. 인공지능의 현 수준 인공지능은 자연어 이해, 이미지 인식, 의사결정 등 인간의 지능이 필요...2025.05.01
-
인공지능의 개념 및 원리를 제시하고, 일상생활과 교육분야에서 인공지능 활용사례에 대해 기술하시오2025.01.251. 인공지능의 개념 인공지능은 컴퓨터나 기계가 인간의 학습, 추론, 문제 해결 등의 지적 업무를 수행하는 데 사용되는 기술이다. 이는 기계가 인간의 지능을 모방하고 흉내내어 인간과 유사하게 학습하고 작업을 수행할 수 있는 능력을 의미한다. 인공지능의 개념은 기술적 발전과 함께 지속적으로 발전해왔으며, 최근에는 기계학습과 딥러닝과 같은 새로운 접근 방식이 등장하여 인공지능의 개념과 의미가 점차 확장되고 있다. 2. 인공지능의 원리 인공지능의 원리는 주로 기계학습과 딥러닝이라는 두 가지 주요 개념에 근간을 두고 있다. 기계학습은 컴퓨...2025.01.25
-
[김영평생교육원]학점은행제 경영학 경영정보시스템 과제 A+2025.05.051. 약한 인공지능과 강한 인공지능 약한 인공지능은 인간의 뇌처럼 사고하거나 문제를 해결할 수는 없지만 컴퓨터를 기반으로 한 인공적인 지능을 의미한다. 반면 강한 인공지능은 인간에 가까운 사고를 하여 문제를 해결할 수 있는 인공지능이다. 강한 인공지능은 약한 인공지능이 가진 기능을 갖출 뿐만 아니라 인간 수준의 복잡하고 다양한 생각을 가질 수 있고, 또 느낄 수 있다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 스스로 학습을 진행하여 인공지능의 성능을 발전시킬 수 있는 기술이다. 기계학습은 지도 학습, 비지도 학습, 준지도 학...2025.05.05
-
산업혁명과 비즈니스 ) 인공지능(AI) 기반 우울증 치료 로봇2025.01.211. 인공지능(AI) 기반 우울증 치료 로봇 본 보고서에서 제안하는 아이디어는 '인공지능(AI) 기반 우울증 치료 로봇'입니다. 이는 최첨단 AI 기술인 자연어 처리(NLP), 컴퓨터 비전을 통한 감정 인식, 기계 학습 알고리즘 등 4차 산업혁명 기술을 총체적으로 활용하여 우울증 환자의 심리 치료를 혁신적으로 지원하고 정신 건강 관리를 새로운 차원으로 끌어올리는 시스템입니다. 이 로봇은 환자의 얼굴 표정, 음성 톤, 제스처 등 비언어적 신호를 포착하여 정확한 감정 상태를 인식하고, 대화 내용을 NLP로 분석하여 언어적 감정 표현을 ...2025.01.21
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13