
총 20개
-
A+ 광통신 - 8. 특수 광섬유의 종류와 특징2025.01.101. 광자결정광섬유 광자결정광섬유는 1991년 Phillip Russel 에 의해 처음 개발된 이후 구조에 따라 다양한 특성을 갖는다는 사실이 밝혀지면서 폭발적인 관심을 받아왔다. 광자결정광섬유는 간혹 holey fiber나 microstructured fiber 등으로 불려지는데, 작은 공기홀 또는 다른 물질로 채워진 홀의 주기적인 배열을 클래딩 구조로 가지고 있다. 기존의 광섬유는 코어와 클래딩의 굴절률 차이가 2% 내외이지만 광자결정광섬유에서는 공기구멍의 직경과 공기구멍 간의 간격을 조절하여 얻을 수 있는 클래딩의 유효굴절률의...2025.01.10
-
A+ 광통신 - PIN 포토다이오드와 APD2025.01.081. PIN 포토다이오드 PIN 포토다이오드는 pn 접합에 진성 반도체 층(i 영역)을 삽입한 구조를 가지고 있습니다. i 영역은 저항성이 크고 불순물 농도가 낮아 역 전압이 주로 이 영역에 걸리게 됩니다. 이로 인해 공핍층이 넓어지고 전계가 강해져 고속 동작, 높은 양자효율, 낮은 암전류 등의 장점을 가지고 있습니다. 하지만 역 전압 증가에 따라 암전류와 잡음전류도 증가하는 단점이 있습니다. 2. 어밸런치 포토다이오드(APD) APD는 내부에 강한 전계가 형성된 p 영역이 있어, 이 영역에서 발생한 전자가 가속되어 새로운 전자-정...2025.01.08
-
A+))물리학실험 광학실험2025.01.151. 빛의 굴절 현상 실험을 통해 빛의 굴절 현상을 관찰하고 이해할 수 있었다. 굴절의 법칙에 따르면 빛은 속도가 느린 물질 쪽으로 꺾이는 것을 확인할 수 있었다. 또한 내부 전반사 현상도 관찰할 수 있었는데, 이는 굴절률이 큰 물질에서 작은 물질로 진행할 때 일어나는 현상이다. 2. 빛의 회절과 간섭 단일 슬릿과 이중 슬릿 실험을 통해 빛의 파동성을 확인할 수 있었다. 단일 슬릿에서는 회절 무늬가, 이중 슬릿에서는 간섭 무늬가 관찰되었다. 이중 슬릿 실험에서는 슬릿 간격이 증가할수록 간섭 무늬의 수가 증가하고 밝기가 어두워지는 것...2025.01.15
-
라이파이(Light Fidelity)원리, 장점, 한계 및 전망2025.01.211. 라이파이(Light Fidelity) 개념 Li-Fi(Light Fidelity)는 광통신 기술의 일종으로, LED 조명을 이용해 데이터를 전송하는 혁신적인 통신 방식이다. Wi-Fi(Wireless Fidelity)와 달리, Li-Fi는 전파 대신 가시광선, 적외선, 또는 자외선을 이용해 데이터를 전송한다. 이 기술은 전통적인 무선 통신의 대안으로 주목받고 있으며, 그 가능성과 응용 분야는 매우 다양하다. 2. 라이파이 등장배경 1) 전파 스펙트럼의 포화 2) 보안과 프라이버시 문제 3) 전파 간섭 문제 4) 에너지 효율성 ...2025.01.21
-
LED의 특성 분석2025.05.111. LED의 광출력-전류 특성 LED의 광출력-전류 특성은 LED에 0.5mA 간격으로 전류를 증가시키면서 주입하여 PD(Photo Diode)를 통해 광전류 값을 측정한다. 450nm, 555nm LED에 주입하는 최대 전류 값은 30mA이며 630nm에 주입하는 최대 전류 값은 75mA이다. 2. 450nm LED의 외부 양자효율(EQE) 그림 6은 450nm LED의 외부 양자효율(EQE)를 측정한 그래프이다. 그림 6-(a)를 통해 7V 근처에서 최대 EQE 값 0.0035를 갖고 이후 EQE가 미세하게 줄어드는 경향을 보...2025.05.11
-
A+ 광통신 - 15. Eye Diagram, Dark current, BER2025.01.041. Eye Diagram Eye Diagram은 광 또는 전기 신호의 누적ㆍ중첩된 전압 파형을 시간축 상에서 나타낸 것으로, 데이터 신호의 품질을 확인할 수 있는 방법입니다. 부호간 간섭이나 잡음에 의해 오염된 수신 신호의 품질을 살펴볼 수 있으며, 시리얼 통신에서 가장 기본적인 측정법입니다. Eye Diagram을 통해 최적의 샘플링 시간, 시간 오차에 대한 민감도, 잡음 여유, 최대 왜곡, 타이밍 지터, 심볼간 간섭 등을 확인할 수 있습니다. 2. Dark current Dark current는 광자가 장치에 들어가지 않는 경...2025.01.04
-
A+ 광통신 3주차 과제 - FTTH, SONET2025.01.061. FTTH(Fiber To The Home) FTTH는 가정 내 광네트워크를 의미하며, 광케이블 가입자망 방식으로 인터넷 설비하는 방식의 하나이다. 광케이블을 사용하며, 이론상 데이터 전송속도는 무제한이다. 일반 가정까지 광통신을 구축하는 기술로써, 최소 100Mbps 이상의 Gbit/s의 속도를 지원한다. FTTH는 IP통신망을 통해 음성통화는 물론이며 데이터, 멀티미디어 정보를 초고속으로 제공할 수 있는 장점이 있다. 따라서 유무선 통합, 통방 융합 등을 지원할 수 있는 광대역 통합망(BcN)으로 각광 받고 있다. 2. SO...2025.01.06
-
[레이저및광통신실험A+]fourier image2025.05.111. High Pass Filter (HPF) 실험 결과에서 HPF(High Pass Filter)를 사용하여 얻은 이미지를 확인할 수 있습니다. 그림 1-(a)에서 그림 1-(h)로 갈수록 회절무늬의 중앙을 가리는 HPF의 크기가 증가하여 회절무늬의 중앙부분 저주파 성분이 사라지는 것을 확인하였습니다. 2. 레이저 빛의 편광 그림 2에서 polarizer를 통과한 빛의 세기를 보면 그림 2-(a)보다 그림 2-(b)에서의 빛이 세기가 더 강한 것을 확인할 수 있습니다. 따라서 광섬유에 들어가기 전 레이저 빛은 편광판에 따라 달라지...2025.05.11
-
광통신 - 잡음원의 종류와 특징2025.01.041. 광섬유 손실 광신호가 광섬유를 진행하면서 산란, 흡수, 반사 등의 현상으로 신호 전력이 떨어지는 현상. 주요 손실 요인으로는 레일리 산란, 불순물 흡수, 분자진동 흡수 등이 있다. 이러한 손실은 거리에 따라 dB/km 단위로 표시된다. 2. 산란 손실 광섬유 내에서 일어나는 산란에는 레일리 산란, 미 산란, 브릴루앙 산란, 라만 산란 등 4가지 종류가 있다. 이 중 레일리 산란이 가장 큰 영향을 미치며, 파장의 4승에 반비례하여 감소한다. 3. 흡수 손실 광섬유에 포함된 불순물과 수분에 의한 흡수로 인해 광 출력이 열로 유실되...2025.01.04
-
[레이저및광통신실험A+]광통신의 분산 의존성2025.05.111. 광통신 광통신은 광섬유 내로 들어간 광 신호의 내부 전반사를 통해 이루어진다. 내부 전반사는 광섬유 내 입사각이 임계각과 90° 사이의 값을 가지면 그 빛이 거의 100% 반사되는 과정이다. 광섬유에서 내부 전반사를 통해 광섬유 내부를 전파하는 빛을 모드(mode)라고 한다. 단일모드 광섬유(single-mode fiber)는 하나의 모드만을 가지며 광 신호의 펄스 모양을 유지하는 데 뛰어나다. 다중모드 광섬유(multimode fiber)는 여러 개의 모드가 광섬유 내부를 전파하며, 각각의 모드들이 이동하는 거리가 다르기 때...2025.05.11