총 34개
-
확률과 통계2024.08.141. 서론 1.1. 통계 분석을 통한 데이터 활용 통계 분석을 통한 데이터 활용은 현대 사회에서 매우 중요한 역할을 하고 있다. 데이터의 양이 기하급수적으로 늘어나면서 다양한 분야에서 통계 기법을 활용하여 이를 분석하고 해석하는 것이 필수적이 되었기 때문이다. 특히 21세기에 들어 빅데이터의 출현으로 통계학 전반에 새로운 도전이 생기고 있다. 자료의 대용량화와 새로운 형태의 등장, 통계로 풀고자 하는 문제의 복잡성, 통계학의 보편화, 경쟁 분야와 경쟁직업의 대두 등이 그것이다. 이에 따라 통계 분석 기법의 발전과 더불어 빅데이...2024.08.14
-
세상을 바꾸는 아름다운 수학2024.10.061. 베이즈의 정리와 베이지안 추론 1.1. 베이즈의 정리 1.1.1. 조건부 확률 일반적인 사회현상을 살펴보면 많은 변수들이 존재한다. 과학실험과 같이 여러 변수들을 통제하고 조사 및 분석을 할 수 없고, 두 가지 이상의 사건에 대해서 하나의 조건이 발생했다는 전제 하에 다른 조건이 발생하는 경우가 많다. 즉 실험에 관련된 두 사건 A와 B에 있어서 일반적으로 사건 A가 일어났는지, 일어나지 않았는지에 따라 사건 B가 일어날 확률이 달라진다"" 이를 조건부확률이라고 한다. 표본공간 S의 부분집합 사건 A와 B에 대하여, 사건...2024.10.06
-
베이즈 데이터 분석과 코로나19 진단 키트 민감도와 특이성 분석2024.10.031. 서론 1.1. 통계학과 데이터 기반 의사 결정의 중요성 통계학은 데이터를 바탕으로 실세계 현상을 이해하고, 이를 통해 합리적인 의사 결정을 내리는 데 필수적인 도구를 제공한다. 특히, 확률과 베이즈 정리는 불확실성 하에서 의사 결정을 지원하는 중요한 수단으로, 의학, 경제학, 공학 등 다양한 분야에서 널리 사용된다. 확률을 기반으로 한 의사 결정은 특히 현대 사회의 복잡한 문제를 해결하는 데 중요한 역할을 하며, 이러한 과정에서 얻어진 통계적 결과는 사회적, 경제적, 과학적 의사 결정의 기반을 제공한다. 1.2. 연구 목적 ...2024.10.03
-
베이즈데이터분석2024.09.161. 베이즈 정리와 데이터 분석 1.1. 베이즈 정리의 개념 및 원리 베이즈 정리의 개념 및 원리는 다음과 같다. 베이즈 정리는 데이터를 관측한 후 기존의 믿음(사전확률)을 새로운 정보(우도)로 업데이트하여 개선된 새로운 믿음(사후확률)을 얻는 것을 설명한다. 이는 원래의 확률(사전확률)이 관측된 데이터에 의해 어떻게 변화하는지를 보여준다. 베이즈 정리는 조건부 확률로 표현되는데, 사건 A가 발생한 상황에서 사건 B가 발생할 확률 P(B|A)를 계산한다. 이때 P(B|A)는 사후확률로, 사건 A가 일어난 후 사건 B가 일어날...2024.09.16
-
세상을바꾸는아름다움수학2024.09.021. 베이즈 정리와 베이지안 추론 1.1. 베이즈 정리 1.1.1. 조건부 확률의 개념 일반적인 사회현상을 살펴보면 많은 변수들이 존재한다. 과학실험과 같이 여러 변수들을 통제하고 조사 및 분석을 할 수 없고, 두 가지 이상의 사건에 대해서 하나의 조건이 발생했다는 전제 하에 다른 조건이 발생하는 경우가 많다. 즉 실험에 관련된 두 사건 A,B에 있어서 일반적으로 A가 일어났는지, 일어나지 않았는지에 따라 사건 B가 일어날 확률이 달라진다. 표본공간 S의 부분집합 사건 A,B에 대하여, 사건 A가 발생한 후에 B가 발생한 경우의...2024.09.02
-
조건부확률2024.11.071. 서론 현대 사회에서는 불확실성이 가득한 환경에서 예측하고 결정하는 능력이 매우 중요하다. 우리는 생활 속에서 다양한 확률적 사건을 마주하며, 그에 따라 결정을 내리기도 한다. 특히 경영이나 경제 분야에서는 리스크를 줄이고 효과적인 결정을 내리는 데 있어 확률이 중요한 역할을 한다. 확률 이론을 이해하는 것은 상황을 보다 명확하게 파악하고 예측할 수 있는 수단을 제공해주기 때문에 실무에서 자주 활용된다. 그중에서도 한계확률, 결합확률, 조건부확률은 다양한 상황에서 확률적 예측과 의사결정의 기반이 되는 중요한 개념이다. 이 글에서...2024.11.07
-
질병진단에서 조건부확률2024.11.071. 서론 통계학은 데이터를 바탕으로 실세계 현상을 이해하고, 이를 통해 합리적인 의사 결정을 내리는 데 필수적인 도구를 제공한다. 특히, 확률과 베이즈 정리는 불확실성 하에서 의사 결정을 지원하는 중요한 수단으로, 의학, 경제학, 공학 등 다양한 분야에서 널리 사용된다. 확률을 기반으로 한 의사 결정은 특히 현대 사회의 복잡한 문제를 해결하는 데 중요한 역할을 하며, 이러한 과정에서 얻어진 통계적 결과는 사회적, 경제적, 과학적 의사 결정의 기반을 제공한다. 이러한 배경에서 본 연구는 통계적 의사 결정 이론을 중심으로, 구체적인 ...2024.11.07
-
베이즈데이터분석2024.11.061. 베이즈 통계 및 데이터 분석 1.1. 베이즈 정리와 베이즈 통계 베이즈 정리와 베이즈 통계는 불확실성 하에서의 의사결정을 위한 통계적 방법론이다. 베이즈 정리는 원래의 확률이 새로운 정보에 의해 어떻게 변하는지를 보여준다. 즉, 베이즈 정리는 사전 확률(prior probability)을 사후 확률(posterior probability)로 업데이트하는 과정을 수학적으로 표현한 것이다. 베이즈 정리는 다음과 같이 표현된다: P(A|B) = (P(B|A) * P(A)) / P(B) 여기서 P(A|B)는 사건 B가 발생했...2024.11.06
-
세상을 바꾸는 아름다운 수학2024.11.081. 베이즈 정리와 베이지안 추론 1.1. 베이즈 정리 1.1.1. 조건부 확률 일반적인 사회현상을 살펴보면 많은 변수들이 존재한다. 과학실험과 같이 여러 변수들을 통제하고 조사 및 분석을 할 수 없고, 두 가지 이상의 사건에 대해서 하나의 조건이 발생했다는 전제 하에 다른 조건이 발생하는 경우가 많다. 즉 실험에 관련된 두 사건 A,B에 있어서 일반적으로 A가 일어났는지, 일어나지 않았는지에 따라 사건 B가 일어날 확률이 달라진다. 표본공간 S의 부분집합 사건 A,B에 대하여, 사건 A가 발생한 후에 B가 발생한 경우의 확...2024.11.08
-
세상을 바꾸는 아름다운 수학2024.11.101. 베이즈의 정리와 베이지안 추론 1.1. 베이즈의 정리 1.1.1. 조건부 확률 일반적인 사회현상을 살펴보면 많은 변수들이 존재한다. 과학실험과 같이 여러 변수들을 통제하고 조사 및 분석을 할 수 없고, 두 가지 이상의 사건에 대해서 하나의 조건이 발생했다는 전제 하에 다른 조건이 발생하는 경우가 많다. 즉 실험에 관련된 두 사건 A,B에 있어서 일반적으로 A가 일어났는지, 일어나지 않았는지에 따라 사건 B가 일어날 확률이 달라진다. 표본공간 S의 부분집합 사건 A,B에 대하여, 사건 A가 발생한 후에 B가 발생한 경우의...2024.11.10
