본문내용
1. 서론
금오공과대학교 신소재공학부에서는 일반물리학실험 수업을 통해 커패시터의 충방전 현상과 옴의 법칙을 실험적으로 학습하고 있다. 이번 실험은 저항과 커패시터로 이루어진 회로의 특성을 관찰하고 이해하는 데 목적이 있다. 커패시터의 충전 및 방전 과정에서 시간에 따른 전압 변화를 측정하여 회로의 시간상수를 계산하고, 옴의 법칙을 이용해 전압, 전류, 저항 간의 관계를 분석한다. 이를 통해 전기회로의 기본 원리를 확인하고 실험 데이터와 이론적 계산값을 비교하여 그 유의미성을 도출할 수 있을 것이다. 또한 저항과 커패시터의 값을 변화시켜가며 실험을 반복함으로써 회로 변수에 따른 특성 변화를 관찰할 수 있을 것으로 기대된다. 이번 실험 결과를 토대로 전기전자 회로의 기본 원리와 구성 요소들의 특성을 보다 깊이 있게 이해할 수 있을 것이다.
2. 커패시터 충방전 실험
2.1. 실험 목적
커패시터의 충전과 방전에 관한 실험 목적은 저항과 커패시터로 이루어진 회로에서 커패시터에 인가되는 전압의 시간적인 변화를 관측하고 회로의 시간상수를 구하는 것이다. 커패시터가 충전되는 동안 회로에 흐르는 전류와 커패시터의 전위차는 키르히호프의 법칙에 의해 결정되며, 이를 통해 전하의 시간에 따른 변화를 나타내는 식을 얻을 수 있다. 실험적으로는 커패시터의 전위차를 측정하여 전하량을 구할 수 있으며, 이를 통해 회로의 시간상수를 계산할 수 있다. 이 실험을 통해 저항과 커패시터의 값에 따른 시간상수의 변화를 확인할 수 있을 것이다.
2.2. 관련 이론
그림 29.1과 같이 커패시터와 저항으로 이루어진 회로에서 커패시터가 충전되는 동안 회로에 흐르는 전류는 키르히호프의 법칙을 적용하면 R {dq} over {dt} + {q} over {C} - epsilon = 0이 된다. 이 식이 전하 q의 시간에 대한 변화를 결정하는 미분방정식이며, 이 방정식의 해는 q(t) = C epsilon {1-exp(-t/RC)}로 주어진다. 이 식을 시간에 관하여 미분하면 전류의 시간에 따른 변화를 나타내는 식 i(t) = {epsilon} over {R} exp(-t/RC)를 얻을 수 있다. 실험적으로 q(t)의 값은 커패시터의 전위차를 측정함으로써 얻을 수 있으며, 이때 Vc = q/C = epsilon {1-exp(-t/RC)}의 관계가 성립한다. 여기서 RC는 시간의 차원을 가지는 회로의 시간상수(time constant)이며, 이는 커패시터가 완전히 충전되어 평형 상태에 도달했을 때의 전하량의 1-e^{-1} ≈ 0.63배(63%)로 충전되는데 걸리는 시간이다. 방전 과정은 회로에 기전력이 없으므로 R {dq} over ...