본문내용
1. 활성탄 페놀 흡착 실험
1.1. 실험목적 및 서론
이 실험의 목적은 활성탄을 이용하여 페놀을 흡착하는 과정을 이해하고 분석하는 것이다. 우선, 흡착이란 기체, 액체, 용해된 상태의 원자, 분자 또는 이온이 고체나 액체 표면에 붙는 과정이다. 이번 실험에서는 용질이 액상일 때의 공정에 해당된다. 흡착 공정은 분리공정 분야에서 중요하게 사용되며, 특정물질을 흡착시켜 다른 물질의 순도를 높이거나 특정물질만 분리해내는 데 활용된다. 흡착은 흡착되는 분자와 흡착제 표면 사이의 결합 종류에 따라 물리 흡착과 화학 흡착으로 나뉘며, 각각 특징이 다르다. 또한 흡착에는 온도, 압력, 농도, 흡착제의 성질 등 다양한 요인이 영향을 미치게 된다. 이 실험에서는 활성탄을 이용하여 페놀 용액 내 페놀의 흡착 정도를 관찰하고 분석하고자 한다. 또한 실험 결과를 바탕으로 Freundlich Isotherm과 Langmuir Isotherm 방정식을 활용하여 필요한 상수들을 계산할 것이다. 이를 통해 활성탄의 페놀 흡착 특성을 보다 심도 있게 이해할 수 있을 것이다.
1.2. 실험이론
1.2.1. 흡착의 정의와 종류
흡착은 기체, 액체, 용해된 상태의 원자, 분자 또는 이온이 고체나 액체 표면에 붙는 과정이다. 흡착되는 물질은 흡착질이며, 흡착이 일어나는 고체는 흡착제라고 한다. 흡착은 용질의 상태에 따라 기체상 흡착과 액상 흡착으로 나뉜다.
흡착은 흡착되는 분자와 흡착제 표면 사이의 결합 종류에 따라 물리 흡착과 화학 흡착으로 구분된다. 물리 흡착은 Van der Waals 힘과 같은 상대적으로 약한 인력에 의해 발생하며, 다분자층에서 일어난다. 화학 흡착은 화학결합력과 같은 상대적으로 강한 인력에 의해 발생하며, 단분자층에서만 일어난다. 물리 흡착은 흡착반응이 가역적이지만, 화학 흡착은 활성화 에너지의 존재로 인해 비가역적이다.
따라서 흡착은 물질을 분리하거나 정제하는 데 사용되며, 흡착제의 종류와 표면 특성에 따라 다양한 활용이 가능하다. 흡착 메커니즘을 이해하는 것은 흡착 공정 설계와 최적화에 매우 중요하다.
1.2.2. 흡착에 영향을 미치는 요인
흡착에 영향을 미치는 요인이다. 온도, 압력, 농도, 흡착제의 성질이 흡착에 영향을 미치는 주요 요인이다.
먼저, 온도가 높을수록 흡착보다 탈착 현상이 우세해지므로 흡착량이 감소한다. 이는 흡착이 발열반응이라 온도가 높아질수록 평형이 탈착 쪽으로 이동하기 때문이다.
다음으로, 기체의 압력이 높을수록 단위 시간당 고체 표면에 충돌하는 기체 분자 수가 증가하여 흡착량이 증가한다.
또한, 용질의 농도가 높고 흡착제의 양이 많을수록 흡착량이 증가한다.
마지막으로, 흡착제의 표면적이 클수록 흡착될 수 있는 면적이 커지므로 더 많은 양을 흡착할 수 있다. 이에 따라 흡착제는 다공성 구조로 되어있어 표면적을 넓히기 위한 특징을 갖는다.
1.2.3. 흡착 등온식
1.2.3.1. Freundlich Isotherm
Freundlich Isotherm은 용액 표면에 대한 용질의 흡착이나 단분자층 흡착이 아닌 경우 등에서 사용되는 실험에 기반한 공식이다. Freundlich Isotherm은 몇 가지 가정이 필요하다. 첫째, 표면 흡착점에서 한 분자만 흡착되고 그 흡착된 분자는 고정되어 있으며, 모든 흡착점의 에너지 상태는 동일하고 흡착된 분자끼리는 상호작용이 없다고 가정한다. 둘째, Langmuir 흡착 등온선에 미분 흡착열이 표면 덮임률에 따라 지수적으로 감소한다고 가정한다. 이제 등온식을 유도해보면 x/m = kCn이 된다. 여기서 x는 흡착된 용질의 질량, m은 흡착제의 질량, C는 평형상태의 농도이며, k와 n은 상수이다. 양변에 log를 취하면 Log(x/m) = log[kCn] = logk + nlogCeq이 된다. 이를 y = b + mx 형태로 변환하면 y = Log(x/m), b = logk, m = n, x = logCeq가 된다. 따라서 실험 데이터를 이용하여 선형그래프로 그리면 k와 n을 구할 수 있다. Freundlich Isotherm은 다양한 계에서 실험적으로 얻어진 많은 등온선 데이터에 잘 맞는 경험식으로, 실제 공정에서 주로 사용되고 있다.
1.2.3.2. Langmuir Isotherm
Langmuir Isotherm은 고체 표면에 흡착점이 존재하여 그 흡착점에 기체가 흡착하는 경우의 흡착량에 관한 이론에 기반한 식이다. Langmuir Isotherm은 몇 가지 가정에 기반하고 있는데, 첫째로 이 고체 표면에는 기체 분자를 잡아서 흡착시키기에 충분한 분자적 인력을 갖는 점인 흡착점이 일정하게 분포하고 있으며, 이 흡착점에는 한 분자만 흡착이 가능하고 흡착된 분자는 고정되어 있다고 가정한다. 둘째로 흡착점에 닿은 기체 분자에서 일정한 비율의 분자만이 그 표면에 붙잡히고 그중에서도 일정한 수의 분자가 끊임없이 다시 기체상으로 돌아가는데, 이 중에서 그 표면에 흡착된 분자가 기껏해야 1분자층을 넘지 못한다고 가정한다. 셋째로 모든 흡착점의 에너지 상태는 동일하고, 흡착된 분자끼리는 상호작용이 없다고 가정한다.
Langmuir Isotherm 등온식은 이러한 가정을 바탕으로 유...