총 250개
-
A+ 정보통신실험 3주차 결과보고서 - 푸시풀 전력 증폭 회로2025.01.041. 푸시풀 전력 증폭 회로 이번 실험은 푸시풀 전력 증폭회로를 구성하여 푸시풀 증폭기의 동작원리를 알아보고 트랜지스터의 동작점(바이어스점)과 AC신호의 크기 및 위상을 측정하여 비교하는데 목적이 있습니다. 실험 결과 V_BE는 이론치와 별 차이 없이 제대로 결과값이 나왔지만, I_C를 측정하는 과정에서 예비실험으로 PSpice에 나온 결과와 많은 차이가 있었습니다. 측정된 전류는 이론값들보다 낮게 측정되었습니다. 이는 브레드보드 내부의 내부저항과 멀티미터를 통해 전류값이 측정되면서 낮아질 수 있다는 것으로 생각됩니다. 또한 전류는...2025.01.04
-
전자회로실험 과탑 A+ 예비 보고서 (실험 3 정전압 회로와 리미터)2025.01.291. PN 접합 다이오드를 이용한 전압 레귤레이터 PN 접합 다이오드를 이용한 전압 레귤레이터는 부하 저항과 병렬로 다이오드를 연결하여, 입력 전압이나 부하 전류의 변화에도 출력 전압이 크게 변화하지 않도록 설계된 회로입니다. 입력 전압이 변하더라도 다이오드의 특성에 의해 출력 전압의 변화가 제한되기 때문입니다. PSpice를 이용하여 입력 전압의 변화와 부하 전류의 변화에 따른 출력의 변화를 모의실험하였습니다. 2. 제너 다이오드를 이용한 전압 레귤레이터 제너 다이오드를 이용한 전압 레귤레이터는 PN 접합 다이오드와 유사한 동작 ...2025.01.29
-
Semiconductor Op Amp 실험 보고서 (A+)2025.01.241. OP AMP(Operational Amplifier 연산 증폭기) OP AMP는 가장 큰 전압 이득을 가지며 +입력단자와 입력단자 간의 전압 차를 이용한 증폭기이다. OP AMP는 입력단자, +입력단자, 정측 전원단자, 부측 전원단자, 출력 단자 총 5개의 단자로 구성되어 있다. 2개의 입력단자 중에 입력단자에 입력 신호를 가하면 입력과는 반대되는 상태의 신호가 출력되고, +입력단자에 입력 신호를 가하면 같은 상태의 신호가 출력된다. 따라서 입력단자를 반전 입력, +입력단자를 비반전 입력이라 칭한다. 2. 반전 증폭기 반전 증...2025.01.24
-
중앙대학교 전자회로 설계실습 예비보고서 6. Common Emitter Amplifier 설계2025.04.291. Common Emitter Amplifier 설계 이 보고서는 50 Ω, Rc = 5 kΩ, Vcc = 12 V인 경우, β=100인 NPN BJT를 사용하여 Ic가 kΩ단위이고 amplifier gain(Vout/Vin)이 –100 V/V인 emitter 저항을 사용한 Common Emitter Amplifier를 설계, 구현, 측정, 평가하는 내용을 다루고 있습니다. 설계 과정에서 Early effect 무시, 최대전력 전달을 위한 부하저항 결정, 증폭기 이득 계산, 바이어스 전압 및 저항 값 도출 등의 내용이 포함되어 있...2025.04.29
-
A+받은 BJT(바이폴라 정션 트랜지스터) 결과레포트2025.05.101. NPN 트랜지스터 실험 NPN 트랜지스터의 동작을 살펴보았다. 실험 회로를 구성하고 가변저항을 조정하여 트랜지스터의 각 단자에 인가된 전압 및 전류를 확인하였다. Emitter-Base 사이의 전압이 이상적인 도통전압 0.7V와 다른 이유를 실제 NP 다이오드의 V-I 곡선을 통해 설명하였다. Emitter에 흐르는 전류와 Base, Collector로 나뉘는 전류를 측정하여 전류 이득을 계산하였다. 가변저항 값을 변경하여 Emitter 전류의 변화에 따른 전류 이득의 변화를 확인하였다. 또한 Emitter 전압의 극성을 반대...2025.05.10
-
공통 소오스 증폭기 실험 결과 보고서2025.01.021. 공통 소오스 증폭기 이번 실험에서는 공통 소오스 증폭기 회로를 구현하고 실험을 진행했습니다. 실험 과정에서 이상과 현실의 차이, 장비의 한계 등으로 인해 교재의 실험 절차와 다른 방식으로 실험을 진행했습니다. 입력 전압을 변화시키면서 출력 전압을 측정하여 전압 이득을 계산했고, 입출력 임피던스도 구했습니다. 실험 결과, 약 10.6배의 전압 이득이 발생했으며, 입출력 임피던스 계산 시 약 20%의 오차가 발생했습니다. 이는 AC 전압 인가 시 전류 측정의 어려움 때문인 것으로 보입니다. 또한 바이어스 회로를 포함한 공통 소오스...2025.01.02
-
전기전자공학실험-A급 및 B급 전력 증폭기 (2)2025.04.301. pnp형 트랜지스터 pnp형 트랜지스터는 npn형 트랜지스터와 방향이 반대이므로 회로를 구성할 때 주의해야 한다. 2. B급 증폭기 설계 B급 증폭기를 설계할 때 피크전압이 앞의 것과 똑같이 나타나 회로의 효율이 완벽하게 실험이 가능했다. 3. 출력 전력 계산 책에 나온 출력 전력을 사용할 때는 rms값인지, peak값인지, p-p값인지 주의하여 값을 계산해야 한다. 4. A급 증폭기 효율 A급 증폭기의 최대 효율 25%는 초과할 수 없다는 것을 확인했다. 5. B급 증폭기 다이오드 B급 증폭기의 다이오드 2개는 파형이 0.7...2025.04.30
-
전기전자공학실험-공통 이미터 트랜지스터 증폭기2025.04.301. 공통 이미터 트랜지스터 증폭기 공통 이미터 (common-emitter, CE) 트랜지스터 증폭기 회로는 널리 이용된다. 이 회로는 일반적으로 10에서 수백에 이르는 큰 전압 이득을 얻을 수 있고, 적절한 입력과 출력 임피던스를 제공한다. 교류 신호 전압 이득, 입력 임피던스, 출력 임피던스 등의 특성을 분석하고 측정하는 실험을 수행하였다. 실험 결과를 통해 공통 이미터 증폭회로의 동작 원리와 특성을 이해할 수 있었다. 2. BJT 트랜지스터 모델링 BJT 트랜지스터의 실질적인 역할을 모델링하기 위해 적절한 회로 성분을 선택하...2025.04.30
-
트랜지스터 실습22025.01.041. 트랜지스터의 동작 영역 이번 실습에서는 양극성 접합 트랜지스터의 세 가지 동작 영역(컷오프 영역, 활성 영역, 포화 영역)에 대해 실습하였습니다. 컷오프 영역에서는 베이스-에미터 전압이 낮아 콜렉터 전류가 흐르지 않으며, 활성 영역에서는 베이스 전류에 비례하여 콜렉터 전류가 흐르는 것을 확인하였습니다. 포화 영역에서는 베이스-에미터 전압이 높아져 콜렉터 전류가 더 이상 증가하지 않는 것을 관찰하였습니다. 2. 트랜지스터의 정전류원 회로 활성 영역에서 트랜지스터의 콜렉터 전류는 베이스 전류에만 비례하므로, 베이스-에미터 전압을 ...2025.01.04
-
전자회로실험: 정류 회로2025.01.091. 반파 정류회로 반파 정류회로는 다이오드 내부 저항과 부하 저항의 관계를 이용하여 교류 전압을 정류합니다. 입력 전압이 다이오드의 내부 전압 강하보다 크면 출력이 생성되고, 작으면 출력이 0이 됩니다. 이를 통해 양의 주기만 통과시켜 양의 파형을 얻을 수 있습니다. 반파 정류회로의 입출력 전압 관계식과 전압 전달 특성 곡선을 통해 이를 확인할 수 있습니다. 2. 브리지 정류회로 브리지 정류회로는 트랜스포머와 4개의 다이오드를 이용하여 양의 전압과 음의 전압을 모두 양의 전압으로 정류합니다. 입력 전압이 다이오드의 내부 전압 강하...2025.01.09
